EI、Scopus 收录
中文核心期刊

用物理黏性构建高阶不振荡对流扩散差分格式

高智

高智. 用物理黏性构建高阶不振荡对流扩散差分格式[J]. 力学学报, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306
引用本文: 高智. 用物理黏性构建高阶不振荡对流扩散差分格式[J]. 力学学报, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306
Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306
Citation: Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. DOI: 10.6052/0459-1879-2012-3-20120306
高智. 用物理黏性构建高阶不振荡对流扩散差分格式[J]. 力学学报, 2012, (3): 505-512. CSTR: 32045.14.0459-1879-2012-3-20120306
引用本文: 高智. 用物理黏性构建高阶不振荡对流扩散差分格式[J]. 力学学报, 2012, (3): 505-512. CSTR: 32045.14.0459-1879-2012-3-20120306
Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. CSTR: 32045.14.0459-1879-2012-3-20120306
Citation: Gao Zhi. HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (3): 505-512. CSTR: 32045.14.0459-1879-2012-3-20120306

用物理黏性构建高阶不振荡对流扩散差分格式

基金项目: 国家自然科学基金资助项目(10872204).
详细信息
  • 中图分类号: O357

HIGHER-ORDER ACCURATE, NON-OSCILLATORY, THREE-NODES CENTRAL DIFFERENCE SCHEME FOR THE CONVECTIVE-DIFFUSION EQUATION CONSTRUCTED BY USING PHYSICAL VISCOSITY

Funds: The project was supported by the National Natural Science Foundation of China (10872204)
  • 摘要: 利用数值摄动算法, 通过扩散格式数值摄动重构把对流扩散方程的2阶中心差分格式(2-CDS)重构为高精度高分辨率格式, 解析分析和模型方程计算证实了新格式的高精度不振荡性质. 新格式是把物理黏性使流动光滑化的扩散运动规律引入2-CDS 中的结果. 该法显然与构建高级离散格式的常见方法不同. 证实: 数值摄动重构中引入扩散运动规律的结果格式与引入对流运动规律(下游不影响上游的规律)的结果格式一致, 说明对离散方程的数值摄动运算, 在维持原格式结构形式不动的条件下, 不仅能提高格式精度和稳健性, 且可揭示对流离散运动规律与扩散离散运动规律之间的内在关联;同时证实, 文中提出和使用的上、下游分裂方法是构建高精度不振荡离散格式的一个有效方法.
    Abstract: Several higher-order accurate, non-oscillatory, three-nodes central difference schemes for the convective-diffusion equation are given by perturbationally reconstructing the diffusion scheme in the second-order accurate central difference scheme(2-CDS). Excellent properties of higher-order accurate and high resolution of the present new schemes (diffusion perturbation schemes, DPS) are verified by theoertical analyses and three numerical tests which include one-dimensional linear and non-linear and two-dimensional convective-diffusion equations. In all numerical tests, the 2-CDS oscillates and diverges on coarse grids, while part of DPS do not oscillates and can capture discontinuities with high resolution. The mean square root L2 errors of all DPS are greatly less than those of 2-CDS in all numerical tests. The DPS are the results of introducing diffusion-motion law(i.e. physical viscosity smoothing out space-distribution of diffusion quantities) into 2-CDS. The present method is obviously different from the well-known those of constructing high-order accurate and high resolution schemes. In addition, we prove that DPS are completely consistent with those schemes of introducing convection-motion law(i.e. law of that the downstream does not affect the upstream) into 2-CDS, to show that the perturbational operation to 2-CDS not only raises the scheme's accurate and stability but also reveals intrinsic relation between the convective discrete scheme and diffusion discrete scheme, and that the upstream-downstream splitting is a very useful method for reconstructing high-order accurate, high resolution CFD scheme without artificial viscosity or limiter.
  • Chung TJ. Computational Fluid Dynamics (2nd edn). Cambridge: Cambridge University Press, 2010  
    Laney CB. Computational Gasdynamics. Cambridge: Cambridge University Press, 1998
    Von Neuman J, Richtmyer RD. A method for numerical calculation of hydrodynamic shock. J Applied Phys, 1950, 21: 232-257  
    Jameson A, Schmidt W. Turkel E. Numerical solutions of Euler equations by finite volume methods using Runge-Kutta time-stepping schemes. AIAA 81-1259, 1981
    Godunov SK. A difference method for the numerical calculation of discontinuous solutions of hydrodynamic equations. Math Sobrnik, 1959, 47: 271-306
    Harten A. High resolution schemes for hyperbolic conservation laws. J Comput Phys, 1983, 49: 357-393  
    Harten A, Engquist B, Osher S, et al. Uniformly high order accurate essentially non-oscillatory schemes III. Jour Comput Phys, 1987, 71: 231-303  
    Liu XD, Osher S, Chan T. Weighted essentially non-oscillatory schemes. J Comput Phys, 1994, 115: 200-212  
    高智. 对流扩散方程的高精度差分方法. 见: 北京计算流体力学讨论会文集 (第六辑). 中国科学院力学研究所, 1994, 6: 1-23 (Gao Zhi. Higher-order accuracy difference algorithm for the convective diffusion equation. In: Proc. of Beijing Workshop on computation Fluid Dynamics, Institute of Mechanics, Chinese Academy of Sciences, 1994, 6: 1-23 (in Chinese))
    高智. 对流扩散方程的摄动有限体积方法. 见: 第十一届全国计算流体力学会议论文集, 洛阳, 2002. 38-45 (Gao Zhi. Perturbational finite volume method for the convective diffusion equation. In: Proc. of 11th National Conference for Computation Fluid Dynamics. Luoyang, 2002. 38-45 (in Chinese))
    高智. 数值摄动算法及其CFD格式. 力学进展, 2010, 40(6): 607-633 (Gao Zhi. Numerical perturbation algorithm and its CFD schemes. Advances in Mechanics, 2010, 40(6): 607-633 (in Chinese))
    高智. 对流扩散方程的绝对稳定高阶三结点中心差分格式. 力学学报, 2010, 42(5): 811-817 (Gao Zhi. Two absolute stability, higher order central difference schemes for the convective diffusion equation. Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(5): 811-817 (in Chinese))
    朱可, 李明军. 对流扩散方程QUICK格式的数值摄动高精度重构格式. 力学学报, 2011, 43(1): 55-62 (Zhu Ke, Li Mingjun. Numerical perturbation higher-order accurate reconstruction of QUICK scheme for the convective diffusion equation. Chinese Journal of Theoretical and Applied Mechanics, 2011, 43(1): 55-62 (in Chinese))
    杨满叶, 舒适, 李明军. 对流扩散方程的三阶迎风格式的数值摄动高精度 重构. 水动力学研究与进展, A辑, 2010, 25(3): 307-315 (Yang Manye, Zhu Shi, Li Mingjun. Numerical perturbation higher-order accurate reconstruction of third-order upwind difference scheme for the convective diffusion equation. Jour Hydrodynamics Ser, A, 2010, 25(3): 307-315 (in Chinese))
    Gao Zhi. Numerical perturbation algorithm and two absolute positive higher-order accurate central finite-volume schemes for the convective diffusion equation. In: Proc. of 8th Asian Computational Fluid Dynamics Conference, HongKong. Jan, 2010
计量
  • 文章访问数:  1789
  • HTML全文浏览量:  95
  • PDF下载量:  802
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-06-06
  • 修回日期:  2011-11-06
  • 刊出日期:  2012-05-17

目录

    /

    返回文章
    返回