EI、Scopus 收录
中文核心期刊

高维非线性振动系统参数识别

苏鸾鸣, 叶敏

苏鸾鸣, 叶敏. 高维非线性振动系统参数识别[J]. 力学学报, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
引用本文: 苏鸾鸣, 叶敏. 高维非线性振动系统参数识别[J]. 力学学报, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
Citation: Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. DOI: 10.6052/0459-1879-2012-2-20120227
苏鸾鸣, 叶敏. 高维非线性振动系统参数识别[J]. 力学学报, 2012, 44(2): 425-436. CSTR: 32045.14.0459-1879-2012-2-20120227
引用本文: 苏鸾鸣, 叶敏. 高维非线性振动系统参数识别[J]. 力学学报, 2012, 44(2): 425-436. CSTR: 32045.14.0459-1879-2012-2-20120227
Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. CSTR: 32045.14.0459-1879-2012-2-20120227
Citation: Su Luanming, Ye Min. PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 425-436. CSTR: 32045.14.0459-1879-2012-2-20120227

高维非线性振动系统参数识别

基金项目: 国家自然科学基金资助项目(10672141).
详细信息
  • 中图分类号: O322

PARAMETRIC INDENTIFICATION FOR HIGH-DIMENSIONAL NONLINEAR VIBRATION SYSTEM

Funds: The project was supported by the National Natural Science Foundation of China (10672141).
  • 摘要: 将增量谐波平衡非线性识别推广到高维振动系统, 推导了基于增量谐波平衡的多自由度非线性系统的识别方程. 针对一个两自由度系统进行了数值模拟计算, 讨论了系统在单周期、倍周期和混沌运动状态下的参数识别, 以及噪声对识别结果的影响, 验证了增量谐波平衡非线性识别在多自由度系统中的有效性. 结果表明, 该方法具有较高的计算效率和识别精度, 以及良好的抗噪能力.
    Abstract: The incremental harmonic balance nonlinear identification (IHBNID) is extended to high-dimensional nonlinear vibration system. The identification equation of multi-degree-of-freedom nonlinear dynamic system is derived. Numerical simulation on a two-degrees-of-freedom nonlinear system example, based on the IHBNID, was carried out on the period-1, the period-doubling and the chaotic motions. The effect of noise on the identification parameters is analyzed. The effectiveness of the IHBNID is verified for multi-degree-of-freedom nonlinear dynamic system. The simulating results show that the proposed method has high accuracy and efficiency, and can improve the antinoise ability.
  • 1 Ljung L. System Identification: Theory for the User. New Jersey: Prentice-Hall, 1987   
    2 Kerschen G, Worden K, Vakakis AF, et al. Past, present and future of nonlinear system identification in structural dynamics. it Mechanical Systems and Signal Processing, 2006, 20(3): 505-592   
    3 Staszewski WJ. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. it Journal of Sound and Vibration, 1998, 214: 639-658   
    4 Mohammad KS, Worden K, Tomlinson GR. Direct parameter estimation for linear and nonlinear structures. it Journal of Sound and Vibration,1991, 152: 471-499
    5 Rice HJ, Fitzpatrick JA. A procedure for the identification of linear and non-linear multi-degree-of-freedom systems. it Journal of Sound and Vibration, 1991, 149: 397-411   
    6 Richards CM, Singh R. Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral method. it Journal of Sound and Vibration, 1998, 213, 673-708   
    7 Adams DE, Allemang RJ. A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. it Mechanical Systems and Signal Processing, 2000,14(4): 637-656   
    8 Liang Y, Feeny BF. Parametric identification of chaotic base-excited double pendulum experiment. it Nonlinear Dynamics, 2008, 52(1-2):181-197   
    9 Thothadri M, Casas RA, Moon FC, et al. Nonlinear system identification of multi-degree-of-freedom systems. it Nonlinear Dynamics, 2003(3), 32:307-322
    10 Thothadri M, Moon FC. Nonlinear system identification of systems with periodic limit-cycle response. it Nonlinear Dynamics, 2005, 39(1-2):63-77   
    11 唐驾时.多自由度非线性系统的频域识别. 湖南大学学报, 1997, 24(4):24-29 (Tang Jiashi. Parameter identification of nonlinear system with multi-degree of freedom in the frequency domain. it Journal of Hunan University, 1997, 24(4): 24-29 (in Chinese))
    12 Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic system. it ASME Journal of Applied Mechanics, 1981, 48: 959-964   
    13 窦苏广,叶敏,张伟.基于增量谐波平衡的参激系统非线性识别法. 力学学 报, 2010, 42(2): 332-336 (Dou Suguang, Ye Min, Zhang Wei. Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method. it Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 332-336 (in Chinese))
    14 Leung AYT, Chui SK. Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. it Journal of Sound and Vibration, 1995, 181(4): 619-633   
    15 Yuan CM, Feeny BF. Parametric identification of chaotic systems. it Journal of Vibration and Control, 1998, 4: 405-426  
计量
  • 文章访问数:  1882
  • HTML全文浏览量:  119
  • PDF下载量:  669
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-05-31
  • 修回日期:  2011-09-12
  • 刊出日期:  2012-03-17

目录

    /

    返回文章
    返回