1 Ljung L. System Identification: Theory for the User. New Jersey: Prentice-Hall, 1987
|
2 Kerschen G, Worden K, Vakakis AF, et al. Past, present and future of nonlinear system identification in structural dynamics. it Mechanical Systems and Signal Processing, 2006, 20(3): 505-592
|
3 Staszewski WJ. Identification of non-linear systems using multi-scale ridges and skeletons of the wavelet transform. it Journal of Sound and Vibration, 1998, 214: 639-658
|
4 Mohammad KS, Worden K, Tomlinson GR. Direct parameter estimation for linear and nonlinear structures. it Journal of Sound and Vibration,1991, 152: 471-499
|
5 Rice HJ, Fitzpatrick JA. A procedure for the identification of linear and non-linear multi-degree-of-freedom systems. it Journal of Sound and Vibration, 1991, 149: 397-411
|
6 Richards CM, Singh R. Identification of multi-degree-of-freedom non-linear systems under random excitations by the reverse-path spectral method. it Journal of Sound and Vibration, 1998, 213, 673-708
|
7 Adams DE, Allemang RJ. A frequency domain method for estimating the parameters of a non-linear structural dynamic model through feedback. it Mechanical Systems and Signal Processing, 2000,14(4): 637-656
|
8 Liang Y, Feeny BF. Parametric identification of chaotic base-excited double pendulum experiment. it Nonlinear Dynamics, 2008, 52(1-2):181-197
|
9 Thothadri M, Casas RA, Moon FC, et al. Nonlinear system identification of multi-degree-of-freedom systems. it Nonlinear Dynamics, 2003(3), 32:307-322
|
10 Thothadri M, Moon FC. Nonlinear system identification of systems with periodic limit-cycle response. it Nonlinear Dynamics, 2005, 39(1-2):63-77
|
11 唐驾时.多自由度非线性系统的频域识别. 湖南大学学报, 1997, 24(4):24-29 (Tang Jiashi. Parameter identification of nonlinear system with multi-degree of freedom in the frequency domain. it Journal of Hunan University, 1997, 24(4): 24-29 (in Chinese))
|
12 Lau SL, Cheung YK. Amplitude incremental variational principle for nonlinear vibration of elastic system. it ASME Journal of Applied Mechanics, 1981, 48: 959-964
|
13 窦苏广,叶敏,张伟.基于增量谐波平衡的参激系统非线性识别法. 力学学 报, 2010, 42(2): 332-336 (Dou Suguang, Ye Min, Zhang Wei. Nonlinearity system identification method with parametric excitation based on the incremental harmonic balance method. it Chinese Journal of Theoretical and Applied Mechanics, 2010, 42(2): 332-336 (in Chinese))
|
14 Leung AYT, Chui SK. Non-linear vibration of coupled duffing oscillators by an improved incremental harmonic balance method. it Journal of Sound and Vibration, 1995, 181(4): 619-633
|
15 Yuan CM, Feeny BF. Parametric identification of chaotic systems. it Journal of Vibration and Control, 1998, 4: 405-426
|