EI、Scopus 收录
中文核心期刊

非齐次动力方程Duhamel项的精细积分

谭述君 钟万勰

谭述君 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553
引用本文: 谭述君 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553
Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553
Citation: Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. DOI: 10.6052/0459-1879-2007-3-2006-553
谭述君 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007, 23(3): 374-381. CSTR: 32045.14.0459-1879-2007-3-2006-553
引用本文: 谭述君 钟万勰. 非齐次动力方程Duhamel项的精细积分[J]. 力学学报, 2007, 23(3): 374-381. CSTR: 32045.14.0459-1879-2007-3-2006-553
Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. CSTR: 32045.14.0459-1879-2007-3-2006-553
Citation: Shujun Tan, Wanxie Zhong. Precise integration method for duhamel terms arising from non-homogenous dynamic systems[J]. Chinese Journal of Theoretical and Applied Mechanics, 2007, 23(3): 374-381. CSTR: 32045.14.0459-1879-2007-3-2006-553

非齐次动力方程Duhamel项的精细积分

Precise integration method for duhamel terms arising from non-homogenous dynamic systems

  • 摘要: 提出了不需要矩阵求逆运算的求解Duhamel积分项的精细积分方法. 通过将精细积分法的关键思想------加法定理和增量存储------直接应用于Duhamel积分响应矩阵的求解,可给出当非齐次项分别为多项式、正弦/余弦以及指数函数等基本形式时Duhamel积分在计算机上的精确解.特别的,该算法不依赖于系统矩阵(或相关矩阵)的形态. 当系统矩阵奇异或接近奇异时,其优越性更为显著. 算例验证了该算法的有效性.
    Abstract: With the precise integration method (PIM) proposed for lineartime-invariant systems, one can obtain precise numerical results approaching theexact solution at the integration points. However, it is more or lessdifficult to use the algorithm in the Duhamel's integration arisingfrom the non-homogenous dynamic systems due to the inverse matrixcalculations. So the precise integration method for Duhamel terms withoutthe inverse matrix calculations is proposed. By applying the techniques ofaddition theorem and increment storage, which are the key ideas of PIM,directly to the Duhamel integration terms, it can also give precisenumerical results can be obtained close to the computer precision when the non-homogenous termsare polynomial, sinusoidal, exponential or theircombinations. In particular, this method is not affected by the qualityof the system matrix (or the relative matrix). If the system matrix issingular or nearly singular, the advantages of the method will be more remarkable.Numerical examples are given to demonstrate the validity and efficiency ofthe method.
  • 期刊类型引用(10)

    1. 范赛锋,员海玮. 不同流动状态下舵面气动热弹性分析. 航空科学技术. 2023(11): 34-43 . 百度学术
    2. 张志刚,赵金山,粟斯尧,孔荣宗,陈挺. 机动弹头舵轴热环境分析. 南京航空航天大学学报. 2022(04): 583-591 . 百度学术
    3. 沈恩楠,郭同庆,吴江鹏,胡家亮,张桂江. 高超声速全动翼面全时域耦合分析方法及应用. 航空学报. 2021(08): 199-212 . 百度学术
    4. 王梓伊,张伟伟,刘磊. 高超声速飞行器热气动弹性仿真计算方法综述. 气体物理. 2020(06): 1-15 . 百度学术
    5. 李益文,王宇天,庞垒,肖良华,丁志文,段朋振. 进气道等离子体/磁流体流动控制研究进展. 力学学报. 2019(02): 311-321 . 本站查看
    6. 李桥忠,陈木凤,李游,牛小东,Adnan Khan. 浸没边界–简化热格子Boltzmann方法研究及其应用. 力学学报. 2019(02): 392-404 . 本站查看
    7. 苑朝凯,李进平,陈宏,姜宗林,俞鸿儒. 高超声速溢流冷却实验研究. 力学学报. 2018(01): 1-8 . 本站查看
    8. 叶柳青,叶正寅. 激波主导流动下壁板的热气动弹性稳定性理论分析. 力学学报. 2018(02): 221-232 . 本站查看
    9. 叶友达,张涵信,蒋勤学,张现峰. 近空间高超声速飞行器气动特性研究的若干关键问题. 力学学报. 2018(06): 1292-1310 . 本站查看
    10. 叶正寅,孟宪宗,刘成,叶柳青. 高超声速飞行器气动弹性的近期进展与发展展望. 空气动力学学报. 2018(06): 984-994 . 百度学术

    其他类型引用(6)

计量
  • 文章访问数:  2408
  • HTML全文浏览量:  107
  • PDF下载量:  914
  • 被引次数: 16
出版历程
  • 收稿日期:  2006-11-08
  • 刊出日期:  2007-05-17

目录

    /

    返回文章
    返回