CONVECTIVE INSTABILITY IN THERMOCAPILLARY MIGRATION OF A VISCOELASTIC DROPLET
-
摘要: 液滴在温度分布不均的固壁面上产生的热毛细迁移广泛存在于微流控、喷墨印刷等应用中, 对其流动进行稳定性分析对液滴迁移的精准控制具有重要意义. 本文采用线性稳定性理论研究了附壁黏弹性液滴在热毛细迁移中的对流不稳定性, 得到了不同Prandtl数($Pr$)下的临界Marangoni数($Ma_{\rm c})$与弹性数的函数关系, 并分析了临界模态的流场和能量机制. 研究发现: 流体弹性激发了更多不稳定模态, 小$Pr$的临界模态为斜波和流向波, 而中高$Pr$的临界模态为斜波和展向稳态模态. 强弹性使得$Ma_{\rm c}$显著下降, 而弱弹性略微增强了流动稳定性. 在中$Pr$下, $Ma_{\rm c}$随$Pr$的增大而增大. 对于斜波模态, 扰动温度的振幅可存在于流场中间区域, 而其他两种模态的温度振幅只存在于自由表面上, 并且在高$Pr$下的流线分布几乎是对称的. 能量分析表明: 随着弹性数增大, 基本流做功由正变负; 在小$Pr$中, 扰动应力做功既可能耗散能量又可能提供能量; 在高$Pr$中, 基本流做功可忽略不计. 对于同向流向波, 扰动速度和扰动应力做功在垂直方向上均存在多次振荡. 将液滴迁移与热毛细液层进行对比发现, 由于基本流和边界条件的不同, 两者在临界模态和扰动流场中均存在较大差异.Abstract: Thermocapillary migration of a droplet placed on a non-uniformly heated solid surface appears in a variety of practical applications, such as microfluidics, inkjet printing, et al. The flow stability analysis is crucial for the precise control of droplet migration. In the present work, the convective instability in thermocapillary migration of a wall-attached viscoelastic droplet is examined by linear stability analysis. The relation between the critical Marangoni number ($Ma_{\rm c}$) and the elastic number is obtained at different Prandtl numbers ($Pr$). The flow fields and energy mechanisms of preferred modes are analyzed. The results show that more kinds of preferred modes are excited by the elasticity. The preferred modes at small $Pr$ are the oblique and streamwise waves, while those at moderate and high $Pr$ are oblique waves and spanwise stationary modes. The strong elasticity significantly reduces the $Ma_{\rm c}$, while the weak elasticity slightly enhances the flow stability. $Ma_{\rm c}$ increases with $Pr$ at moderate $Pr$. For the oblique wave, the amplitude of perturbation temperature may appear in the middle region of flow field, while the amplitudes of other two modes only exist on the free surface. The distribution of streamlines is almost symmetric at high $Pr$. The energy analysis shows that the work done by the basic flow changes from positive to negative when the elastic number increases. The work done by the perturbation stress may either dissipate or provide energy at small $Pr$, while the work done by the basic flow is negligible at high $Pr$. For the downstream streamwise wave, the perturbation velocity and the work done by perturbation stress fluctuate several times in the vertical direction. Comparing the droplet migration with thermocapillary liquid layers, it can be found that due to the differences of basic flow and boundary conditions, there are quite different between their preferred modes and perturbation flow fields.
-
Keywords:
- thermocapillary migration /
- viscoelastic droplet /
- stability analysis
-
-
[1] Karbalaei A, Kumar R, Cho HJ. Thermocapillarity in microfluidics-a review. Micromachines, 2016,7(2):13 [2] Basaran OA, Gao HJ, Bhat PP. Nonstandard inkjets. Annual Review of Fluid Mechanics, 2013,45(1):85-113 [3] Shankar Subramanian RBR. The Motion of Bubbles and Drops in Reduced Gravity. Cambridge University Press, 2005: 3411-3416 [4] Liu HH, Zhang YH. Modelling thermocapillary migration of a microfluidic droplet on a solid surface. Journal of Computational Physics, 2015,280:37-53 [5] Wu ZB. Steady thermocapillary migration of a droplet in a uniform temperature gradient combined with a radiation energy source at large Marangoni numbers. Physical Review E, 2018,98(1):013110 [6] 叶学民, 张湘珊, 李明兰 等. 自润湿流体液滴的热毛细迁移特性. 物理学报, 2018,67(18):223-234 (Ye Xueming, Zhang Xiangshan, Li Minglan, et al. Thermocapillary migration characteristics of self-rewetting drop. Acta Physica Sinica, 2018,67(18):223-234 (in Chinese))
[7] 张波. 热辐射下液滴/气泡自发迁移的数值研究. [硕士论文]. 北京: 华北电力大学, 2018 (Zhang Bo. Numerical investigation on spontaneous droplet/bubble migration under thermal radiation. [Master Thesis]. Beiijing: North China Electric Power University, 2018 (in Chinese))
[8] 钟源, 杜海存, 张莹 等. 单向温度梯度下异质液滴的热毛细迁移. 过程工程学报, 2018,18(4):697-703 (Zhong Yuan, Du Haicun, Zhang Ying, et al. Thermocapillary migration of heterogeneous droplets with unidirectional temperature gradient. The Chinese Journal of Process Engineering, 2018,18(4):697-703 (in Chinese))
[9] 孙涛, 姜存华, 沈达鹏 等. 水平固体表面温度梯度下硅油液滴运动. 微纳电子技术, 2017(7):52-58 (Sun Tao, Jiang Cunhua, Shen Dapeng, et al. A silicone oil droplet motion under temperature gradient on horizontal solid surface. Micronanoelectronic Technology, 2017(7):52-58 (in Chinese))
[10] 钟源. 液滴撞击不同固体表面动力学特性及热毛细迁移研究. [硕士论文]. 南昌: 南昌大学, 2019 (Zhong Yuan. Research on dynamic characteristics of droplets impacting different solid surfaces and thermocapillary migration. [Master Thesis]. Nanchang: Nanchang University, 2019(in Chinese))
[11] 尚超, 阳倦成, 张杰 等. 镓铟锡液滴撞击泡沫金属表面的运动学特性研究. 力学学报, 2019,51(2):380-391 (Shang Chao, Yang Juancheng, Zhang Jie, et al. Experimental study on the dynamic characteristics of galinstan droplet impacting on the metal foam surface. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):380-391 (in Chinese))
[12] 霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019,51(2):425-431 (Huo Yuanping, Wang Junfeng, Zuo Ziwen, et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):425-431 (in Chinese))
[13] 刘赵淼, 徐元迪, 逄燕 等. 压电式微滴按需喷射的过程控制和规律. 力学学报, 2019,51(4):1031-1042 (Liu Zhaomiao, Xu Yuandi, Pang Yan, et al. Study of process control on piezoelectric drop-on-demand ejection. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):1031-1042 (in Chinese))
[14] Ford ML, Nadim A. Thermocapillary migration of an attached drop on a solid surface. Physics of Fluids, 1994,6(9):3183-3185 [15] Smith MK. Thermocapillary migration of a 2-dimensional liquid droplet on a solid-surface. Journal of Fluid Mechanics, 1995,294(1):209-230 [16] Chen JZ, Troian SM, Darhuber AA, et al. Effect of contact angle hysteresis on thermocapillary droplet actuation. Journal of Applied Physics, 2005,97(1):014906 [17] Brzoska J, Brochard-Wyart F, Rondelez F. Motions of droplets on hydrophobic model surfaces induced by thermal gradients. Langmuir, 1993,9(8):2220-2224 [18] Haj-hariri H, Shi Q, Borhan A. Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers. Physics of Fluids, 1997,9(4):845-855 [19] Pratap V, Moumen N, Subramanian RS. Thermocapillary motion of a liquid drop on a horizontal solid surface. Langmuir, 2008,24(9):5185-5193 [20] Dai QW, Khonsari MM, Shen C, et al. Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient. Langmuir, 2016,32(30):7485-7492 [21] Dai QW, Huang W, Wang XL, et al. Ringlike migration of a droplet propelled by an omnidirectional thermal gradient. Langmuir, 2018: acs.langmuir.7b04259 [22] Dai QW, Chong ZJ, Huang W, et al. Migration of liquid bridges at the interface of spheres and plates with an imposed thermal gradient. Langmuir, 2020,36:6268-6276 [23] Dai QW, Huang W, Wang XL, et al. Directional interfacial motion of liquids: Fundamentals, evaluations, and manipulation strategies. Tribology International, 2021,154:106749 [24] Bowen M, Tilley B. Thermally induced van der Waals rupture of thin viscous fluid sheets. Physics of Fluids, 2012,24(3):931-1198 [25] Cazabat A, Heslot F, Troian S, et al. Fingering instability of thin spreading films driven by temperature gradients. Nature, 1990,346(6287):824-826 [26] Davis SH. Thermocapillary instabilities. Annual Review of Fluid Mechanics, 1987,19(1):403-435 [27] Schatz MF, Neitzel GP. Experiments on thermocapillary instabilities. Annual Review of Fluid Mechanics, 2001,33(1):93-127 [28] Smith MK, Davis SH. Instabilities of dynamic thermocapillary liquid layers. Part 1. Convective instabilities. Journal of Fluid Mechanics, 1983,132(1):119-144 [29] Riley RJ, Neitzel GP. Instability of thermocapillary-buoyancy convection in shallow layers. Part 1. Characterization of steady and oscillatory instabilities. Journal of Fluid Mechanics, 1998,359:143-164 [30] Li YR, Imaishi N, Azami T, et al. Three-dimensional oscillatory flow in a thin annular pool of silicon melt. Journal of Crystal Growth, 2004,260(1-2):28-42 [31] Burelbach JP, Bankoff SG, Davis HS. Nonlinear stability of evaporating/condensing liquid films. Journal of Fluid Mechanics, 1988,195(1):463-494 [32] Hu KX, Yan CY, Chen QS. Instability of thermocapillary-buoyancy convection in droplet migration. Physics of Fluids, 2019,31(12):122101 [33] Hu KX, He M, Chen QS. Instability of thermocapillary liquid layers for Oldroyd-B fluid. Physics of Fluids, 2016,28(3):93-127 [34] Brochard F. Motions of droplets on solid surfaces induced by chemical or thermal gradients. Langmuir, 1995,5(2):193-213 [35] Bird RB, Curtiss CF, Armstrong RC, et al. Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory. John Wiley & Sons, Inc, 1987 -
期刊类型引用(3)
1. 胡棚辉,胡开鑫. 黏弹性双自由面热毛细液层的不稳定性. 空间科学学报. 2023(04): 683-693 . 百度学术
2. 周游,曾忠,刘浩,张良奇. 高径比对GaAs熔体液桥热毛细对流失稳的影响. 力学学报. 2022(02): 301-315 . 本站查看
3. 栾致漫. 双层系统内Jeffreys流体的Rayleigh-Marangoni对流不稳定性分析. 吉林大学学报(理学版). 2022(06): 1430-1438 . 百度学术
其他类型引用(0)
计量
- 文章访问数: 1273
- HTML全文浏览量: 326
- PDF下载量: 156
- 被引次数: 3