EI、Scopus 收录
中文核心期刊

带滩槽地形的连续弯道中纵向流速横向分布解析

刘玉娇, 余明辉, 田浩永

刘玉娇, 余明辉, 田浩永. 带滩槽地形的连续弯道中纵向流速横向分布解析[J]. 力学学报, 2021, 53(2): 580-588. DOI: 10.6052/0459-1879-20-208
引用本文: 刘玉娇, 余明辉, 田浩永. 带滩槽地形的连续弯道中纵向流速横向分布解析[J]. 力学学报, 2021, 53(2): 580-588. DOI: 10.6052/0459-1879-20-208
Liu Yujiao, Yu Minghui, Tian Haoyong. THE LATERAL DISTRIBUTION OF DEPTH-AVERAGED VELOCITY IN CONSECUTIVE BENDS WITH POOL-POINT BAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 580-588. DOI: 10.6052/0459-1879-20-208
Citation: Liu Yujiao, Yu Minghui, Tian Haoyong. THE LATERAL DISTRIBUTION OF DEPTH-AVERAGED VELOCITY IN CONSECUTIVE BENDS WITH POOL-POINT BAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 580-588. DOI: 10.6052/0459-1879-20-208
刘玉娇, 余明辉, 田浩永. 带滩槽地形的连续弯道中纵向流速横向分布解析[J]. 力学学报, 2021, 53(2): 580-588. CSTR: 32045.14.0459-1879-20-208
引用本文: 刘玉娇, 余明辉, 田浩永. 带滩槽地形的连续弯道中纵向流速横向分布解析[J]. 力学学报, 2021, 53(2): 580-588. CSTR: 32045.14.0459-1879-20-208
Liu Yujiao, Yu Minghui, Tian Haoyong. THE LATERAL DISTRIBUTION OF DEPTH-AVERAGED VELOCITY IN CONSECUTIVE BENDS WITH POOL-POINT BAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 580-588. CSTR: 32045.14.0459-1879-20-208
Citation: Liu Yujiao, Yu Minghui, Tian Haoyong. THE LATERAL DISTRIBUTION OF DEPTH-AVERAGED VELOCITY IN CONSECUTIVE BENDS WITH POOL-POINT BAR[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(2): 580-588. CSTR: 32045.14.0459-1879-20-208

带滩槽地形的连续弯道中纵向流速横向分布解析

基金项目: 1) 国家自然科学基金(11972265);国家重点研发计划资助项目(2016YFC0402604)
详细信息
    作者简介:

    2) 余明辉, 教授, 主要研究方向: 水力学及河流动力学. E-mail: mhyu@whu.edu.cn

    通讯作者:

    余明辉

  • 中图分类号: TV131.1

THE LATERAL DISTRIBUTION OF DEPTH-AVERAGED VELOCITY IN CONSECUTIVE BENDS WITH POOL-POINT BAR

  • 摘要: 本文基于沿水深积分的动量方程,假定二次流项和弯道附加应力项沿横断面呈线性分布,提出了预测弯道垂线平均纵向流速的解析计算方法,进一步提出了河槽区和河滩区垂线平均纵向流速沿断面分布的求解模式,并将其应用于带滩槽地形的反向连续弯道水槽中. 根据实测数据率定计算参数,该模式可计算不同出口水深条件下断面垂线平均纵向流速分布,计算结果与实测数据吻合良好.分析了线性分布假设中参数随水深变化的取值规律和沿横断面分布特点,并对参数进行了敏感性分析,分析表明线性假设中一次项系数分区位置对流速峰值的大小和位置影响较大,常数项根据地形横比降变化进行分区取值,流速计算值对常数项在水平段和斜坡段分区位置较为敏感,并根据参数的敏感度提出了参数沿水槽的均值作为参考值.讨论了动量方程中二次流项和弯道附加应力项沿弯道的横向分布规律,进一步认识线性假设的适用范围,结果表明线性假设在本文试验水槽中适用于弯道沿程.研究成果有助于认识带滩槽地形的连续弯道纵向流速分布特征及其形成机制.
    Abstract: This paper proposes an analytical approach to modeling the lateral distribution of depth-averaged streamwise velocity for flow in consecutive bends with pool-point bar based on the depth-integrated Navier-Stokes equations. The additional secondary flow and yet fully developed flow are assumed to be a linear function of the lateral distance. Then, the model for calculating the average vertical velocity distribution along the cross section of the pool region and the point bar regions is presented, and it is applied to consecutive bends with pool-point bar. By calibrating the calculated parameters from the measured data, the model can calculate the average longitudinal velocity distribution of vertical cross-section under different outlet water depth. The modeled results agree well with experimental data. The value rules of the parameters have analyzed for different water depth and along the cross-sections. Sensitivity analysis is performed on the parameters which showed that the region division of the coefficient of the first degree term in the linear hypothesis has great influence on the size and position of the peak flow velocity. The region division of the constant term value is according to the traverse gradient. The region edge between the flat bed and the sloping bed of the constant term has a significant influence on the results. According to the sensitivity of parameters, the mean value of parameters along the flume is presented as a reference value. The transverse distribution of the secondary flow term and the additional stress term in the depth-integrated Navier--Stokes equations along the experimental channel is discussed to further understand the applicability of the linear hypothesis. The results show that the linear hypothesis is suitable for the curve path in the flume. The research results are helpful to understand the longitudinal velocity distribution characteristics and the formation mechanism of the consecutive bends with pool-point bar.
  • [1] Abril JB, Knight DW. Stage-discharge prediction for rivers in flood applying a depth-averaged model. Journal of Hydraulic Research, 2004,42(6):616-629
    [2] Sharifi S, Sterling M. Using the Shiono and Knight model to predict sediment transport//European IAHR Congress. HeriotWatt University, Edinburgh: Scotland, 2010
    [3] 王虹, 王连接, 邵学军 等. 连续弯道水流紊动特性试验研究. 力学学报, 2013,45(4):525-533

    (Wang Hong, Wang Lianjie, Shao Xuejun, et al. Turbulence characteristics in consecutive bends. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(4):525-533 (in Chinese))

    [4] Farhadi A, Sindelar C, Tritthart M, et al. An investigation on the outer bank cell of secondary flow in channel bends. Journal of Hydro-Environment Research, 2018,18:1-11
    [5] 王千, 刘桦, 房詠柳 等. 孤立波与淹没平板相互作用的三维波面和水动力实验研究. 力学学报, 2019,51(6):1605-1613

    (Wang Qian, Liu Hua, Fang Yongliu, et al. An experimental study of 3-d wave surface and hydrodynamic loads for interaction between solitary wave and submerged horizontal plate. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1605-1613 (in Chinese))

    [6] 杨燕华, 白玉川. 连续弯道水流运动的三维数值模拟. 泥沙研究, 2011 ( 6):46-49

    (Yang Yanhua, Bai Yuchuan. Three-dimensional numerical simulation of flow in successive bends. Journal of Sediment Research, 2011,6:46-49 (in Chinese))

    [7] Gholami A, Bonakdari H, Zaji AH, et al. Simulation of open channel bend characteristics using computational fluid dynamics and artificial neural networks. Engineering Applications of Computational Fluid Mechanics, 2015,9(1):355-369
    [8] 吴霆, 时北极, 王士召 等. 大涡模拟的壁模型及其应用. 力学学报, 2018,50(3):453-466

    (Wu Ting, Shi Beiji, Wang Shizhao, et al. Wall-model for large-eddy simulation and its applications. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):453-466 (in Chinese))

    [9] 张嫚嫚, 孙姣, 陈文义. 一种基于几何重构的Youngs-VOF耦合水平集追踪方法. 力学学报, 2019,51(3):775-786

    (Zhang Manman, Sun Jiao, Chen Wenyi. An interface tracking method of coupled youngs-vof and level set based on geometric reconstruction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):775-786 (in Chinese))

    [10] 王韦, 蔡金德. 弯曲河道内水深和流速平面分布的计算. 泥沙研究, 1989(2):46-54

    (Wang Wei, Cai Jinde. Computation for distribution of d and velocity in curved open channels. Journal of Sediment Research, 1989(2):46-54 (in Chinese))

    [11] 许唯临. 复式河道漫滩水流计算方法研究. 水利学报, 2002,33(6):0021-0027

    (Xu Weilin. Study on computational method of overbank flow in channels with compound cross section. Journal of Hydraulic Engineering, 2001,6:21-26 (in Chinese))

    [12] Tang XN, Knight DW. A general model of lateral depth-averaged velocity distributions for open channel flows. Advances in Water Resources, 2008,31(5):846-857
    [13] Yang KJ, Nie RH, Liu XN, et al. Modeling depth-averaged velocity and boundary shear stress in rectangular compound channels with secondary flows. Journal of Hydraulic Engineering, 2013,139(1):76-83
    [14] 孙东坡, 朱岐武, 张耀先 等. 弯道环流流速与泥沙横向输移研究. 水科学进展, 2006,17(1):61-66

    (Sun Dongpo, Zhu Qiwu, Zhang Yaoxian, et al. Study of circulating velocity profile and lateral sediment transport in curved channels. Advances in Water Science, 2006,17(1):61-66 (in Chinese))

    [15] Shiono K, Knight DW. Turbulent open-channel flows with variable depth across the channel. Journal of Fluid Mechanics, 1991,222:617-646
    [16] Devi K, Khatua KK, Das BS. A numerical solution for depth-averaged velocity distribution in an open channel flow. ISH Journal of Hydraulic Engineering, 2016,22(3):262-271
    [17] Ervine DA, Babaeyan-Koopaei K, Sellin RHJ. Two-dimensional solution for straight and meandering overbank flows. Journal of Hydraulic Engineering, 2000,126(9):653-669
    [18] Knight DW, Omran M, Tang XN. et al. Modeling depth-averaged velocity and boundary shear in trapezoidal channels with secondary flows. Journal of Hydraulic Engineering, 2007,133(1):39-47
    [19] Liu C, Luo X, Liu XN. et al. Modeling depth-averaged velocity and bed shear stress in compound channels with emergent and submerged vegetation. Advances in Water Resources, 2013,60:148-159
    [20] Huai WX, Gao M, Zeng YH. et al. Two-dimensional analytical solution for compound channel flows with vegetated floodplains. Applied Mathematics & Mechanics, 2009,30(9):1121-1130
    [21] Zhong Y, Huai WX, Chen G. Analytical model for lateral depth-averaged velocity distributions in rectangular ice-covered channels. Journal of Hydraulic Engineering, 2019,145(1):04018080
    [22] 杨中华, 高伟. 考虑滩槽相互作用的漫滩水流二维解析解. 四川大学学报 (工程科学版), 2009,41(5):42-46

    (Yang Zhonghua, Gao Wei. Two dimensional analytical solution for overbank flows with interaction between the main channel and floodplain. Journal of Sichuan University (Engineering Science Edition), 2009,41(5):42-46 (in Chinese))

    [23] 哈岸英, 吴腾, 陈刚. 冲积河流滩槽定量划分方法及应用. 水利学报, 2012,43(1):10-14

    (Ha Anying, Wu Teng, Chen Gang. Quantitative division method for floodplain and main channel of alluvial river and its application. Journal of Hydraulic Engineering, 2012,43(1):10-14 (in Chinese))

    [24] Rezaei B, Knight DW. Application of the Shiono and Knight method in compound channels with non-prismatic floodplains. Journal of Hydraulic Research, 2009,47(6):716-726
    [25] Rozovskii IL. Flow of Water in Bends of Open Channels. London: Acad. of Sci. of the Ukrainian SSR, Kiev, 1957
    [26] Tang XN, Knight DW. The lateral distribution of depth-averaged velocity in a channel flow bend. Journal of Hydro-environment Research, 2015,9(4):532-541
    [27] Tubino M, Repetto R, Zolezzi G. Free bars in rivers. Journal of Hydraulic Research, 1999,37(6):759-775
    [28] Chow VT. . Open-Channel Hydraulics. London: McGraw-Hill, 1959
    [29] Van Balen W, Uijttewaal WSJ, Blanckaert K. Large-eddy simulation of a mildly curved open-channel flow. Journal of Fluid Mechanics, 2009,630:413-442
    [30] Hu CW, Yu MH, Wei HY. et al. The mechanisms of energy transformation in sharp open-channel bends: Analysis based on experiments in a laboratory flume. Journal of Hydrology, 2019,571:723-739
  • 期刊类型引用(12)

    1. 吴能友,李彦龙,蒋宇静,孙金声,谢文卫,胡高伟,王韧,于彦江,王金堂,陈强,申凯翔,孙志文,陈明涛. 海洋天然气水合物工程地质学的提出、学科内涵与展望. 地学前缘. 2025(02): 216-229 . 百度学术
    2. 张吉东,殷振元,李清平,李淑霞,焦红梅,刘晓惠. 基于高压微流控芯片的水合物相变与气泡演化研究. 力学学报. 2024(06): 1615-1623 . 本站查看
    3. 李承峰,叶旺全,陈亮,桂斌,郝锡荦,孙建业,张永超,刘乐乐,陈强,郑荣儿. 南海神狐海域天然气水合物微观赋存特征的超分辨率CT图像识别. 海洋地质与第四纪地质. 2024(03): 149-159 . 百度学术
    4. 杨明军,巩广军,郑嘉男,宋永臣. 泥质低渗水合物降压开采特性与模型研究. 化工学报. 2024(08): 2909-2916 . 百度学术
    5. 李彦龙,吴能友,王宏斌,纪云开,綦民辉,刘昌岭,万义钊,陈明涛. 海域天然气水合物储层的多场耦合模式及研究进展. 工程地质学报. 2024(04): 1355-1366 . 百度学术
    6. 秦绪文,陆程,张召彬,王平康,李守定,董艳辉,马超,何玉发,庞守吉. 南海天然气水合物试采储层热流耦合与温度场调控研究进展. 地质学报. 2024(11): 3213-3224 . 百度学术
    7. 陈亮,叶旺全,李承峰,孙建业,郑荣儿. 基于时间演化的天然气水合物CT图像阈值分割. CT理论与应用研究. 2023(02): 171-178 . 百度学术
    8. 秦绪文,陆程,王平康,梁前勇. 中国南海天然气水合物开采储层水合物相变与渗流机理:综述与展望. 中国地质. 2022(03): 749-769 . 百度学术
    9. 范婕,许欣怡,周诗岽,周年勇. 基于PSO-SVM的天然气水合物生成条件预测. 天然气化工—C1化学与化工. 2022(05): 171-176 . 百度学术
    10. 郭旭洋,金衍,林伯韬,卢运虎,訾敬玉. 南海天然气水合物水平井降压开采诱发沉积物力学响应规律. 中国石油大学学报(自然科学版). 2022(06): 41-47 . 百度学术
    11. 魏鹳举,胡冉,廖震,陈益峰. 湿润性对孔隙介质两相渗流驱替效率的影响. 力学学报. 2021(04): 1008-1017 . 本站查看
    12. 蔡少斌,杨永飞,刘杰. 考虑热流固耦合作用的多孔介质孔隙尺度两相流动模拟. 力学学报. 2021(08): 2225-2234 . 本站查看

    其他类型引用(13)

计量
  • 文章访问数:  977
  • HTML全文浏览量:  172
  • PDF下载量:  93
  • 被引次数: 25
出版历程
  • 收稿日期:  2020-06-15
  • 刊出日期:  2021-02-09

目录

    /

    返回文章
    返回