EI、Scopus 收录
中文核心期刊

轻敲模式下 AFM 动力学模型及能量耗散机理研究

魏征, 郑骁挺, 刘晶, 魏瑞华

魏征, 郑骁挺, 刘晶, 魏瑞华. 轻敲模式下 AFM 动力学模型及能量耗散机理研究[J]. 力学学报, 2020, 52(4): 1106-1119. DOI: 10.6052/0459-1879-20-099
引用本文: 魏征, 郑骁挺, 刘晶, 魏瑞华. 轻敲模式下 AFM 动力学模型及能量耗散机理研究[J]. 力学学报, 2020, 52(4): 1106-1119. DOI: 10.6052/0459-1879-20-099
Wei Zheng, Zheng Xiaoting, Liu Jing, Wei Ruihua. STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1106-1119. DOI: 10.6052/0459-1879-20-099
Citation: Wei Zheng, Zheng Xiaoting, Liu Jing, Wei Ruihua. STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1106-1119. DOI: 10.6052/0459-1879-20-099
魏征, 郑骁挺, 刘晶, 魏瑞华. 轻敲模式下 AFM 动力学模型及能量耗散机理研究[J]. 力学学报, 2020, 52(4): 1106-1119. CSTR: 32045.14.0459-1879-20-099
引用本文: 魏征, 郑骁挺, 刘晶, 魏瑞华. 轻敲模式下 AFM 动力学模型及能量耗散机理研究[J]. 力学学报, 2020, 52(4): 1106-1119. CSTR: 32045.14.0459-1879-20-099
Wei Zheng, Zheng Xiaoting, Liu Jing, Wei Ruihua. STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1106-1119. CSTR: 32045.14.0459-1879-20-099
Citation: Wei Zheng, Zheng Xiaoting, Liu Jing, Wei Ruihua. STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(4): 1106-1119. CSTR: 32045.14.0459-1879-20-099

轻敲模式下 AFM 动力学模型及能量耗散机理研究

基金项目: 1)国家自然科学基金(11572031)
详细信息
    通讯作者:

    魏征

  • 中图分类号: O326,TH742.9

STUDY ON A DYNAMICS MODEL OF TAPPING MODE AFM AND ENERGY DISSIPATION MECHANISM

  • 摘要: 轻敲模式下探针从远离到间歇性接触样品表面,是一个连续的能量耗散过程.针对该连续过程的能量耗散机理研究仅零星存在于各个文献之中,对于连续过程中各个阶段的能量耗散机理也没有一个系统的解释和实验验证.本文提出了新的位移激励下原子力显微镜探针-样品系统简化模型并得到了一维振子系统等效阻尼的计算方法,并通过该方法计算了探针在远离样品表面时的空气黏性阻尼和靠近样品时的空气压膜阻尼,分析了探针从远离样品到间歇性接触样品表面这一过程中的环境耗散机理变化,得到了原子力显微镜系统理论品质因数与探针工作位置的关系曲线;在此基础上设计了轻敲模式下的微悬臂梁扫频实验,得到了系统实验品质因数与探针工作位置的关系曲线,进而验证了理论模型的准确性. 本文通过对轻敲模式下AFM环境耗散机理进行理论分析和实验验证,希望可以对轻敲模式下AFM动力学特性及其阻尼作用机理有更近一步的认识,同时对微纳米机电系统 (MEMS/NEMS) 能量耗散机理的研究提供理论参考和实验方法.
    Abstract: In the tapping mode, the AFM probe experiences a continuous energy dissipation process when the probe gradually approaches the sample from a far distance to an intermittent contact. Researches on the energy dissipation mechanism of this continuous process still exists sporadically in various literatures, and there are few systematic explanations and experimental verifications for the energy dissipation mechanism of each stage in the continuous process. In this paper, a new simplified model of the AFM probe-sample system under displacement excitation is proposed, and a calculation method for the equivalent damping of the one-dimensional vibration system is obtained. By this method, the viscous damping of the air when the probe is far away from the sample surface and the air squeeze film damping when the probe is close to the sample are calculated. Finally, the change of the environmental dissipation mechanism in the process from the probe away from the sample to the intermittent contact with the sample surface is analyzed, and the relationship curve between the theoretical quality factors of the AFM system and the working positions of the probe is obtained. Based on this, the micro-cantilever frequency sweep experiments with different probes in tapping mode are carried out. The frequency sweep curves are obtained through the experiments, thus obtaining the experimental relationship curve between the quality factors of the system and the working positions of the probe. The accuracy of the theoretical model is verified from the experiments. Through theoretical analysis and experimental verification of the AFM environmental dissipation mechanism in tapping mode, a further understanding of the dynamics characteristics of tapping mode AFM and its damping mechanism will be provided by this study. At the same time, it provides theoretical reference and experimental methods for the research of the energy dissipation mechanism in Micro-nano electromechanical system (MEMS/NEMS).
  • [1] Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems. Physics Reports, 2014,534(3):89-146
    [2] 张文明, 闫寒, 彭志科 等. 微纳机械谐振器能量耗散机理研究进展. 科学通报, 2017,62(19):2077-2093
    [2] ( Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators. Chinese Science Bulletin, 2017,62(19):2077-2093 (in Chinese))
    [3] Gusso A, Viana RL, Mathias AC, et al. Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes. Chaos, Solitons & Fractals, 2019,122:6-16
    [4] 白春礼, 田芳, 罗克. 扫描力显微术. 北京: 科学出版社, 2000: 7-9
    [4] ( Bai Chunli, Tian Fang, Luo Ke. Scanning force microscopy. Beijing: Science Press, 2000: 7-9(in Chinese))
    [5] Binnig G. Atomic force microscope. Physical Review Letters, 1986,56(9):930-933
    [6] Giessibl FJ. Advances in atomic force microscopy. Reviews of Modern Physics, 2003,75(3):949-983
    [7] García R, Pérez R. Dynamic atomic force microscopy methods. Surface Science Reports, 2002,47(6-8):197-301
    [8] Dzedzickis A, Buinskas V, Lenkutis T, et al. Increasing imaging speed and accuracy in contact mode AFM// Roman Szewczyk, eds. Advances in Intelligent Systems and Computing, Automation 2019, 2019,2020:599-607
    [9] Hansma PK, Cleveland JP, Radmacher M, et al. Tapping mode atomic force microscopy in liquids. Applied Physics Letters, 1994,64(13):1738-1740
    [10] Smirnov A, Yasinskii VM, Filimonenko DS, et al. True tapping mode scanning near-field optical microscopy with bent glass fiber probes. Scanning, 2018,3249189:1-9
    [11] Wang ZY, Qian JQ, Li YZ, et al. Wavelet analysis of higher harmonics in tapping mode atomic force microscopy. Micron, 2019,118:58-64
    [12] Anczykowski B, Cleveland JP, Krüger D, et al. Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation. Applied Physics A, 1998,66(1):885-889
    [13] Thomson WT. Theory of Vibration with Applications. Fifth Edition. 北京: 清华大学出版社, 2005: 67-70
    [14] Butt HJ, Siedle P, Seifert K, et al. Scan speed limit in atomic force microscopy. Journal of Microscopy, 2011,169(1):75-84
    [15] Landau LD, Lifshitz EM. 流体动力学. 李值译. 第五版. 北京: 高等教育出版社, 2013: 51-104
    [15] ( Landau LD, Lifshitz EM. Fliuid Mechanics. Li Zhi, Translated. Fifth Edition. Beijing: Higher Education Press, 2013: 51-104(in Chinese))
    [16] Chen GY, Warmack RJ, Thundat T, et al. Resonance response of scanning force microscopy cantilevers. Review of Scientific Instruments, 1994,65(8):2532-2537
    [17] Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998,84(1):64-76
    [18] Hosaka H, Itao K, Kuroda S. Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A (Physical), 1995,49(1-2):87-95
    [19] Lévêque G, Girard P, Belaidi S, et al. Effects of air damping in noncontact resonant force microscopy. Review of Scientific Instruments, 1997,68(11):4137-4144
    [20] 魏征, 孙岩, 王再冉 等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017,49(6):1301-1311
    [20] ( Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode atomic force microscopy. Chinese Journal of Theoretical and Applied Mechanics. 2017,49(6):1301-1311 (in Chinese))
    [21] 柳世华, 魏征, 孙岩 等. 压膜阻尼对原子力显微镜振动特性的影响研究. 振动与冲击, 2020,39(11):185-191
    [21] ( Liu Shihua, Wei Zheng, Sun Yan, et al. Study on influence of squeeze-film damping on the vibration characteristics of atomic force microscopy. Journal of Vibration and Shock, 2020,39(11):185-191 (in Chinese))
    [22] Zhao DM, Liu JL, Wang L. Nonlinear free vibration of a cantilever nanobeam with surface effects: Semi-analytical solutions. International Journal of Mechanical Sciences, 2016,113:184-195
    [23] Bahrami MR, Abeygunawardana AWB. Modeling and simulation of tapping mode atomic force microscope through a bond-graph. Advances in Mechanical Engineering, 2018: 9-15
    [24] Abbasi M. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory. Micron, 2018,107:20-27
    [25] Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B, 2000,61:5600-5609
    [26] 周锡龙, 李法新. 双模态振幅调制原子力显微术相互作用区转变研究. 力学学报, 2018,50(5):1104-1114
    [26] ( Zhou Xilong, Li Faxi. Investigation on transition between tip-sample interaction regimes in bimodal amplitude modulation atomic force microscopy. Chinese Journal of Theoretical and Applied Mechani, 2018,50(5):1104-1114 (in Chinese))
    [27] Kong XC, Deng J, Dong JY, et al. Study of tip wear for AFM-based vibration-assisted nanomachining process. Journal of Manufacturing Processes, 2020,50:47-56
    [28] 唐宇帆, 任树伟, 辛锋先. MEMS 系统中微平板结构声振耦合性能研究. 力学学报, 2016,48(4):907-916
    [28] ( Tang Yufan, Ren Shuwei, Xin Fengxian, et al. Scale effect analysis for the vibro-acoustic performance of a micro-plate. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):907-916 (in Chinese))
    [29] Dou ZP, Qian JQ, Li YZ, et al. Molecular dynamics simulation of bimodal atomic force microscopy. Ultramicroscopy, 2020,112(112971):1-15
    [30] 周远, 唐有绮, 刘星光. 黏弹性阻尼作用下轴向运动 Timoshenko 梁振动特性的研究. 力学学报, 2019,51(6):1897-1904
    [30] ( Zhou Yuan, Tang Youqi, Liu Xingguang. Vibration characteristics of axially moving Timoshenko beam under viscoelastic damping. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1897-1904 (in Chinese))
    [31] 胡璐, 闫寒, 张文明 等. 黏性流体环境下 V 型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653
    [31] ( Hu Lu, Yan Han, Zhang Wenming, et al. Analysis of flexural vibration of Vshaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653 (in Chinese))
    [32] Schmid S, Hierold C. Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams. Journal of Applied Physics, 2008,104(093516):1-12
    [33] Wei Z, Wang ZR, Sun Y, et al. Dissipation energy in tapping-mode atomic force microscopes caused by liquid bridge. Chinese Physics Letters, 2018,35(016802):1-4
    [33] 冯闯, 赵亚溥, 刘冬青. 微梁谐振器中的空气阻尼. 北京科技大学学报, 2007,29(8):841-844
    [33] ( Feng Chuang, Zhao Yapu, Liu Dongqing. Air damping in micro—beam resonators. Journal of University of Science and Technology Beijing, 2007,29(8):841-844 (in Chinese))
    [35] Wei Z, Zhao YP. Growth of liquid bridge in AFM. Journal of Physics D Applied Physics, 2007,40(14):4368-4375
    [36] Altug BMM, Rao MD. Analytical modeling of squeeze film damping for rectangular elastic plates using Green's functions. Journal of Sound and Vibration, 2010,329(22):4617-4633
    [37] Bao MH, Yang H. Squeeze film air damping in MEMS. Sensors and Actuators A Physical, 2007,136(1):3-27
    [38] Blackwell C, Palazotto A, George TJ, et al. The evaluation of the damping characteristics of a hard coating on titanium. Shock and Vibration, 2007,14:37-51
    [39] Zhang Y, Zhao HS, Zuo LJ. Contact dynamics of tapping mode atomic force microscopy. Journal of Sound & Vibration, 2012,331(23):5141-5152
    [40] Zhang WM, Meng G, Zhou JB, et al. Nonlinear dynamics and chaos of microcantilever-based tm-afms with squeeze film damping effects. Sensors, 2009,9(5):3854-3874
    [41] Zhao Y, Huang QX, Zhang LS, et al. Squeeze film air damping in tapping mode atomic force microscopy. Micromachines, 2017,8(226):1-9
  • 期刊类型引用(7)

    1. 杨长运,周锡龙,张帮志. 液体环境下接触共振原子力显微术探针动力学行为研究. 固体力学学报. 2024(05): 694-708 . 百度学术
    2. 曾瑜,刘国林,关睿,魏征. 轻敲式原子力显微镜相位成像的理论和实验研究. 力学与实践. 2024(05): 930-937 . 百度学术
    3. 宾凤姣,关睿,刘国林,曾瑜,魏征. 原子力显微镜动力学简化模型的振动参数探讨. 振动与冲击. 2023(06): 240-247 . 百度学术
    4. 刘国林,曾瑜,刘锦灏,魏征. 关于轻敲式原子力显微镜动力学系统中能量耗散的研究. 力学学报. 2023(11): 2599-2613 . 本站查看
    5. 贾娟,姜爱峰,丁慧,李继军,杨诗婷,郎风超. AFM轻敲模式对Si基SiO_2薄膜粗糙度的研究. 内蒙古民族大学学报(自然科学版). 2022(01): 19-25 . 百度学术
    6. 骆芸尔,高珊,伊艺,陆奕,郑寓,王艳伟,潘海鸥. 脱氧核糖核酸变性和损伤的原子力显微镜液相观察. 分析测试技术与仪器. 2022(03): 241-246 . 百度学术
    7. 魏瑞华,彭安杰,宾凤姣,魏征. 激励频率对TM-AFM相位成像的影响. 电子显微学报. 2021(06): 665-670 . 百度学术

    其他类型引用(12)

计量
  • 文章访问数:  1913
  • HTML全文浏览量:  403
  • PDF下载量:  120
  • 被引次数: 19
出版历程
  • 收稿日期:  2020-04-01
  • 刊出日期:  2020-08-09

目录

    /

    返回文章
    返回