[1] | Imboden M, Mohanty P. Dissipation in nanoelectromechanical systems. Physics Reports, 2014,534(3):89-146 | [2] | 张文明, 闫寒, 彭志科 等. 微纳机械谐振器能量耗散机理研究进展. 科学通报, 2017,62(19):2077-2093 | [2] | ( Zhang Wenming, Yan Han, Peng Zhike, et al. Research progress on energy dissipation mechanisms in micro- and nano-mechanical resonators. Chinese Science Bulletin, 2017,62(19):2077-2093 (in Chinese)) | [3] | Gusso A, Viana RL, Mathias AC, et al. Nonlinear dynamics and chaos in micro/nanoelectromechanical beam resonators actuated by two-sided electrodes. Chaos, Solitons & Fractals, 2019,122:6-16 | [4] | 白春礼, 田芳, 罗克. 扫描力显微术. 北京: 科学出版社, 2000: 7-9 | [4] | ( Bai Chunli, Tian Fang, Luo Ke. Scanning force microscopy. Beijing: Science Press, 2000: 7-9(in Chinese)) | [5] | Binnig G. Atomic force microscope. Physical Review Letters, 1986,56(9):930-933 | [6] | Giessibl FJ. Advances in atomic force microscopy. Reviews of Modern Physics, 2003,75(3):949-983 | [7] | García R, Pérez R. Dynamic atomic force microscopy methods. Surface Science Reports, 2002,47(6-8):197-301 | [8] | Dzedzickis A, Buinskas V, Lenkutis T, et al. Increasing imaging speed and accuracy in contact mode AFM// Roman Szewczyk, eds. Advances in Intelligent Systems and Computing, Automation 2019, 2019,2020:599-607 | [9] | Hansma PK, Cleveland JP, Radmacher M, et al. Tapping mode atomic force microscopy in liquids. Applied Physics Letters, 1994,64(13):1738-1740 | [10] | Smirnov A, Yasinskii VM, Filimonenko DS, et al. True tapping mode scanning near-field optical microscopy with bent glass fiber probes. Scanning, 2018,3249189:1-9 | [11] | Wang ZY, Qian JQ, Li YZ, et al. Wavelet analysis of higher harmonics in tapping mode atomic force microscopy. Micron, 2019,118:58-64 | [12] | Anczykowski B, Cleveland JP, Krüger D, et al. Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation. Applied Physics A, 1998,66(1):885-889 | [13] | Thomson WT. Theory of Vibration with Applications. Fifth Edition. 北京: 清华大学出版社, 2005: 67-70 | [14] | Butt HJ, Siedle P, Seifert K, et al. Scan speed limit in atomic force microscopy. Journal of Microscopy, 2011,169(1):75-84 | [15] | Landau LD, Lifshitz EM. 流体动力学. 李值译. 第五版. 北京: 高等教育出版社, 2013: 51-104 | [15] | ( Landau LD, Lifshitz EM. Fliuid Mechanics. Li Zhi, Translated. Fifth Edition. Beijing: Higher Education Press, 2013: 51-104(in Chinese)) | [16] | Chen GY, Warmack RJ, Thundat T, et al. Resonance response of scanning force microscopy cantilevers. Review of Scientific Instruments, 1994,65(8):2532-2537 | [17] | Sader JE. Frequency response of cantilever beams immersed in viscous fluids with applications to the atomic force microscope. Journal of Applied Physics, 1998,84(1):64-76 | [18] | Hosaka H, Itao K, Kuroda S. Damping characteristics of beam-shaped micro-oscillators. Sensors and Actuators A (Physical), 1995,49(1-2):87-95 | [19] | Lévêque G, Girard P, Belaidi S, et al. Effects of air damping in noncontact resonant force microscopy. Review of Scientific Instruments, 1997,68(11):4137-4144 | [20] | 魏征, 孙岩, 王再冉 等. 轻敲模式下原子力显微镜的能量耗散. 力学学报, 2017,49(6):1301-1311 | [20] | ( Wei Zheng, Sun Yan, Wang Zairan, et al. Energy dissipation in tapping mode atomic force microscopy. Chinese Journal of Theoretical and Applied Mechanics. 2017,49(6):1301-1311 (in Chinese)) | [21] | 柳世华, 魏征, 孙岩 等. 压膜阻尼对原子力显微镜振动特性的影响研究. 振动与冲击, 2020,39(11):185-191 | [21] | ( Liu Shihua, Wei Zheng, Sun Yan, et al. Study on influence of squeeze-film damping on the vibration characteristics of atomic force microscopy. Journal of Vibration and Shock, 2020,39(11):185-191 (in Chinese)) | [22] | Zhao DM, Liu JL, Wang L. Nonlinear free vibration of a cantilever nanobeam with surface effects: Semi-analytical solutions. International Journal of Mechanical Sciences, 2016,113:184-195 | [23] | Bahrami MR, Abeygunawardana AWB. Modeling and simulation of tapping mode atomic force microscope through a bond-graph. Advances in Mechanical Engineering, 2018: 9-15 | [24] | Abbasi M. A simulation of atomic force microscope microcantilever in the tapping mode utilizing couple stress theory. Micron, 2018,107:20-27 | [25] | Lifshitz R, Roukes ML. Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B, 2000,61:5600-5609 | [26] | 周锡龙, 李法新. 双模态振幅调制原子力显微术相互作用区转变研究. 力学学报, 2018,50(5):1104-1114 | [26] | ( Zhou Xilong, Li Faxi. Investigation on transition between tip-sample interaction regimes in bimodal amplitude modulation atomic force microscopy. Chinese Journal of Theoretical and Applied Mechani, 2018,50(5):1104-1114 (in Chinese)) | [27] | Kong XC, Deng J, Dong JY, et al. Study of tip wear for AFM-based vibration-assisted nanomachining process. Journal of Manufacturing Processes, 2020,50:47-56 | [28] | 唐宇帆, 任树伟, 辛锋先. MEMS 系统中微平板结构声振耦合性能研究. 力学学报, 2016,48(4):907-916 | [28] | ( Tang Yufan, Ren Shuwei, Xin Fengxian, et al. Scale effect analysis for the vibro-acoustic performance of a micro-plate. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):907-916 (in Chinese)) | [29] | Dou ZP, Qian JQ, Li YZ, et al. Molecular dynamics simulation of bimodal atomic force microscopy. Ultramicroscopy, 2020,112(112971):1-15 | [30] | 周远, 唐有绮, 刘星光. 黏弹性阻尼作用下轴向运动 Timoshenko 梁振动特性的研究. 力学学报, 2019,51(6):1897-1904 | [30] | ( Zhou Yuan, Tang Youqi, Liu Xingguang. Vibration characteristics of axially moving Timoshenko beam under viscoelastic damping. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1897-1904 (in Chinese)) | [31] | 胡璐, 闫寒, 张文明 等. 黏性流体环境下 V 型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653 | [31] | ( Hu Lu, Yan Han, Zhang Wenming, et al. Analysis of flexural vibration of Vshaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653 (in Chinese)) | [32] | Schmid S, Hierold C. Damping mechanisms of single-clamped and prestressed double-clamped resonant polymer microbeams. Journal of Applied Physics, 2008,104(093516):1-12 | [33] | Wei Z, Wang ZR, Sun Y, et al. Dissipation energy in tapping-mode atomic force microscopes caused by liquid bridge. Chinese Physics Letters, 2018,35(016802):1-4 | [33] | 冯闯, 赵亚溥, 刘冬青. 微梁谐振器中的空气阻尼. 北京科技大学学报, 2007,29(8):841-844 | [33] | ( Feng Chuang, Zhao Yapu, Liu Dongqing. Air damping in micro—beam resonators. Journal of University of Science and Technology Beijing, 2007,29(8):841-844 (in Chinese)) | [35] | Wei Z, Zhao YP. Growth of liquid bridge in AFM. Journal of Physics D Applied Physics, 2007,40(14):4368-4375 | [36] | Altug BMM, Rao MD. Analytical modeling of squeeze film damping for rectangular elastic plates using Green's functions. Journal of Sound and Vibration, 2010,329(22):4617-4633 | [37] | Bao MH, Yang H. Squeeze film air damping in MEMS. Sensors and Actuators A Physical, 2007,136(1):3-27 | [38] | Blackwell C, Palazotto A, George TJ, et al. The evaluation of the damping characteristics of a hard coating on titanium. Shock and Vibration, 2007,14:37-51 | [39] | Zhang Y, Zhao HS, Zuo LJ. Contact dynamics of tapping mode atomic force microscopy. Journal of Sound & Vibration, 2012,331(23):5141-5152 | [40] | Zhang WM, Meng G, Zhou JB, et al. Nonlinear dynamics and chaos of microcantilever-based tm-afms with squeeze film damping effects. Sensors, 2009,9(5):3854-3874 | [41] | Zhao Y, Huang QX, Zhang LS, et al. Squeeze film air damping in tapping mode atomic force microscopy. Micromachines, 2017,8(226):1-9 |
|