EI、Scopus 收录
中文核心期刊

水下多级微结构液气界面的稳定性和可恢复性研究

杨松默, 王刚, 曹延林, 黄忠意, 段慧玲, 吕鹏宇

杨松默, 王刚, 曹延林, 黄忠意, 段慧玲, 吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究[J]. 力学学报, 2020, 52(2): 451-461. DOI: 10.6052/0459-1879-20-025
引用本文: 杨松默, 王刚, 曹延林, 黄忠意, 段慧玲, 吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究[J]. 力学学报, 2020, 52(2): 451-461. DOI: 10.6052/0459-1879-20-025
Yang Songmo, Wang Gang, Cao Yanlin, Huang Zhongyi, Duan Huiling, Lü Pengyu. STABILITY AND RECOVERABILITY OF LIQUID-GAS INTERFACES ON SUBMERGED HIERARCHICALLY STRUCTURED SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 451-461. DOI: 10.6052/0459-1879-20-025
Citation: Yang Songmo, Wang Gang, Cao Yanlin, Huang Zhongyi, Duan Huiling, Lü Pengyu. STABILITY AND RECOVERABILITY OF LIQUID-GAS INTERFACES ON SUBMERGED HIERARCHICALLY STRUCTURED SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 451-461. DOI: 10.6052/0459-1879-20-025
杨松默, 王刚, 曹延林, 黄忠意, 段慧玲, 吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究[J]. 力学学报, 2020, 52(2): 451-461. CSTR: 32045.14.0459-1879-20-025
引用本文: 杨松默, 王刚, 曹延林, 黄忠意, 段慧玲, 吕鹏宇. 水下多级微结构液气界面的稳定性和可恢复性研究[J]. 力学学报, 2020, 52(2): 451-461. CSTR: 32045.14.0459-1879-20-025
Yang Songmo, Wang Gang, Cao Yanlin, Huang Zhongyi, Duan Huiling, Lü Pengyu. STABILITY AND RECOVERABILITY OF LIQUID-GAS INTERFACES ON SUBMERGED HIERARCHICALLY STRUCTURED SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 451-461. CSTR: 32045.14.0459-1879-20-025
Citation: Yang Songmo, Wang Gang, Cao Yanlin, Huang Zhongyi, Duan Huiling, Lü Pengyu. STABILITY AND RECOVERABILITY OF LIQUID-GAS INTERFACES ON SUBMERGED HIERARCHICALLY STRUCTURED SURFACES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 451-461. CSTR: 32045.14.0459-1879-20-025

水下多级微结构液气界面的稳定性和可恢复性研究

基金项目: 1)国家自然科学基金资助项目(91848201);国家自然科学基金资助项目(11872004);国家自然科学基金资助项目(11802004)
详细信息
    通讯作者:

    吕鹏宇

  • 中图分类号: O341

STABILITY AND RECOVERABILITY OF LIQUID-GAS INTERFACES ON SUBMERGED HIERARCHICALLY STRUCTURED SURFACES

  • 摘要: 微结构表面浸没水下所形成的液气界面对减阻等应用具有重要意义.液气界面的稳定存在是结构功能表面发挥作用的前提. 因此,如何增强液气界面的稳定性以抵抗浸润转变过程, 以及在液气界面失稳之后,如何实现去浸润过程以提高液气界面的可恢复性能,均具有重要的科学研究意义和实际应用价值, 也是国内外研究关注的热点问题.本文针对具有多级微结构的固体表面,研究其在浸没水下后形成的液气界面的稳定性和可恢复性.通过激光扫描共聚焦显微镜对不同压强下液气界面的失稳过程和降压后的恢复过程进行原位观察,实验结果和基于最小自由能原理的理论分析相吻合.本文揭示了多级微结构抵抗浸润转变以及提高液气界面可恢复性能的机理:侧壁上的次级结构(纳米颗粒、多层翅片)通过增加液气界面在壁面的表观前进接触角增强了液气界面的稳定性;底面的次级结构(纳米颗粒和封闭式次级结构)可以维持纳米尺寸气核的存在,有利于水中溶解气体向微结构内扩散, 最终使液气界面恢复.本文的研究为通过设计多级微结构表面来获得具有较强稳定性和可恢复性的液气界面提供了思路.
    Abstract: The liquid-gas interface formed by immersing the surfaces with microstructures underwater is of great importance for applications such as drag reduction and so on. The stable existence of the liquid-gas interface is a prerequisite for the function of microstructure function surfaces. Therefore, how to enhance the stability of the liquid-gas interface to resist the wetting transition process, and how to implement the de-wetting process to improve the recoverability of the liquid-gas interface after collapse, both have scientific research significance and practical application value, and have triggered extensive investigations at home and abroad. This work is dedicated to investigating the stability and recoverability of liquid-gas interfaces formed on hierarchically structured surfaces after immersion in water. Different kinds of hierarchically structured surfaces were firstly designed and fabricated in order to investigate the influence of the sublevel structures respectively on the sidewalls and the bottom on the stability and recoverability of the liquid-gas interface. Experiments using laser scanning confocal microscopy to in-situ investigate the collapse and recovery process of liquid-gas interfaces were then performed. Theoretical analysis based on minimizing the total free energy of the system was further completed with the aim to better understand the inner mechanism. The experimental results agreed well with the theoretical analysis. This work reveals the mechanism of hierarchically structured surfaces resisting wetting transition and improving liquid-gas interfaces recoverability: sublevel structures (nanoparticles, fins) on the sidewalls enhance the stability of the liquid-gas interface by increasing the apparent advancing contact angle; sublevel structures (nanoparticles and "closed'' sublevel structures) on the bottom surface are able to maintain the existence of nanoscale gas pockets, which is conducive to the diffusion of dissolved gas in the bulk water into the microstructure, and eventually helps the liquid-gas interface to recover. The research in this paper provides ideas for designing hierarchically structured surfaces to obtain liquid-gas interfaces with good stability and recoverability.
  • [1] 高丽瑾, 陈少峰, 恽秋琴 等. 气层减阻技术关键因素影响研究. 中国造船, 2018,59(4):1-13
    [1] ( Gao Lijin, Chen Shaofeng, Yun Qiuqin , et al. Research on influence factors in air layer drag reduction technology. Shipbuilding of China, 2018,59(4):1-13 (in Chinese))
    [2] 顾长捷 . 探讨超疏水技术在水下航行器上的应用. 数字海洋与水下攻防, 2018,1(3):1-6, 74
    [2] ( Gu Changjie . Discussion of super-hydrophobic technology applicating on underwater vehicles. Digital Ocean & Underwater Warfare, 2018,1(3):1-6, 74 (in Chinese))
    [3] Wang YL, Bhushan B . Boundary slip and nanobubble study in micro/nanofluidics using atomic force microscopy. Soft Matter, 2010,6(1):29-66
    [4] 王昭, 严红 . 基于气液相界面捕捉的统一气体动理学格式. 力学学报, 2018,50(4):711-721
    [4] ( Wang Zhao, Yan Hong . Unified gas-kinetic scheme for two phase interface capturing. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):711-721 (in Chinese))
    [5] Rastegari A, Akhavan R . The common mechanism of turbulent skin-friction drag reduction with superhydrophobic longitudinal microgrooves and riblets. Journal of Fluid Mechanics, 2018,838:68-104
    [6] Gose JW, Golovin K, Mathew B , et al. Characterization of superhydrophobic surfaces for drag reduction in turbulent flow. Journal of Fluid Mechanics, 2018,845:560-580
    [7] 陈少华, 彭志龙, 姚寅 等. 表面黏附及表面输运的最新研究进展. 固体力学学报, 2016,37(4):291-311
    [7] ( Chen Shaohua, Peng Zhilong, Yao Yin , et al. The latest research progress in surface adhesion and transportation. Chinese Journal of Solid Mechanics, 2016,37(4):291-311 (in Chinese))
    [8] Li XG, Xue YH, Lv PY , et al. Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming. Soft Matter, 2016,12:1655-1662
    [9] Rajappan A, Golovin K, Toblemann B , et al. Influence of textural statistics on drag reduction by scalable, randomly rough superhydrophobic surfaces in turbulent flow. Physics of Fluid, 2019,31(4):042107
    [10] 蔡书鹏, 汪志能, 段传伟 等. 表面活性剂减阻水溶液突扩流的阻力特性. 力学学报, 2018,50(2):274-283
    [10] ( Cai Shupeng, Wang Zhineng, Duan Chuanwei , et al. Drag characteristics of a drag-reducing surfactant solution flowing over a sudden-expansion pipe. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):274-283 (in Chinese))
    [11] Wang N, Tang L, Cai Y , et al. Scalable superhydrophobic coating with controllable wettability and investigations of its drag reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018,555:290-295
    [12] 魏进家, 刘飞, 刘冬洁 . 减阻用表面活性剂溶液分子动力学模拟研究进展. 力学学报, 2019,51(4):971-990
    [12] ( Wei Jinjia, Liu Fei, Liu Dongjie . Progress in molecular dynamics simulations of surfactant solution for turbulent drag reduction. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(4):971-990 (in Chinese))
    [13] Rastegari A, Akhavan R . On drag reduction scaling and sustainability bounds of superhydrophobic surfaces in high Reynolds number turbulent flows. Journal of Fluid Mechanics, 2019,864:327-347
    [14] 冯家兴, 胡海豹, 卢丙举 等. 超疏水沟槽表面通气减阻实验研究. 力学学报, 2020,52(1):24-30
    [14] ( Feng Jiaxing, Hu Haibao, Lu Bingju , et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation. Chinese Journal of Theoretical and Applied Mechanics, 2020,52(1):24-30 (in Chinese))
    [15] Bartolo D, Bouamrirene F, Verneuil E , et al. Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces. Europhysics Letters, 2006,74(2):299-305
    [16] Kwon HM, Paxson AT, Varanasi KK , et al. Rapid deceleration-driven wetting transition during pendant drop deposition on superhydrophobic surfaces. Physical Review Letters, 2011,106(3):036102
    [17] Zheng QS, Yu Y, Zhao ZH . Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces. Langmuir, 2005,21(26):12207-12212
    [18] Lv PY, Xue YH, Shi Y , et al. Metastable states and wetting transition of submerged superhydrophobic structures. Physical Review Letters, 2014,112(19):196101
    [19] Xue YH, Lv PY, Lin H , et al. Underwater superhydrophobicity: Stability, design and regulation, and applications. Applied Mechanics Reviews, 2016,68(3):030803
    [20] Huang SL, Lv PY, Duan HL . Morphology evolution of liquid-gas interface on submerged solid structured surfaces. Extreme Mechanics Letters, 2019,27:34-51
    [21] Ling H, Katz J, Fu M , et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface. Physical Review Fluids, 2017,2(12):124005
    [22] Seo J, García-Mayoral R, Mani A . Turbulent flows over superhydrophobic surfaces: flow-induced capillary waves, and robustness of air-water interfaces. Journal of Fluid Mechanics, 2018,835:45-85
    [23] Xiang YL, Xue YH, Lv PY , et al. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces. Soft Matter, 2016,12(18):4241-4246
    [24] Xiang YL, Huang SL, Lv PY , et al. Ultimate stable underwater superhydrophobic state. Physical Review Letters, 2017,119(13):134501
    [25] Bobji MS, Kumar SV, Asthana A , et al. Underwater sustainability of the "Cassie" state of wetting. Langmuir, 2009,25(20):12120-12126
    [26] Wang FC, Wu HA . Pinning and depinning mechanism of the contact line during evaporation of nano-droplets sessile on textured surfaces. Soft Matter, 2013,9(24):5703-5709
    [27] Bico J, Thiele U, Quéré D . Wetting of textured surfaces. Colloids and Surfaces, 2002,206(1-3):41-46
    [28] Liu JL, Mei Y, Xia R . A new wetting mechanism based upon triple contact line pinning. Langmuir, 2011,27(1):196-200
    [29] Liu JL, Sun J, Mei Y . Biomimetic mechanics behaviors of the strider leg vertically pressing water. Applied Physics Letters, 2014,104(23):231607
    [30] Nosonovsky M . Multiscale roughness and stability of superhydro- phobic biomimetic interfaces. Langmuir, 2007,23(6):3157-3161
    [31] Whyman G, Bormashenko E . How to make the Cassie wetting state stable? Langmuir, 2011,27(13):8171-8176
    [32] Xue YH, Chu SG, Lv PY , et al. Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir, 2012,28(25):9440-9450
    [33] Wu HP, Zhu K, Wu BB , et al. Influence of structured sidewalls on the wetting states and superhydrophobic stability of surfaces with dual-scale roughness. Applied Surface Science, 2016,382:111-120
    [34] Wu HP, Yang Z, Cao BB , et al. Wetting and dewetting transitions on submerged superhydrophobic surfaces with hierarchical structures. Langmuir, 2017,33(1):407-416
    [35] Hemeda AA , Gad-el-Hak M, Tafreshi HV. Effects of hierarchical features on longevity of submerged superhydrophobic surfaces with parallel grooves. Physics of Fluids, 2014,26(8):082103
    [36] 吴兵兵, 吴化平, 张征 等. 微纳复合结构表面稳定润湿状态及转型过程的热力学分析. 物理学报, 2015,64(17):281-292
    [36] ( Wu Bingbing, Wu Huaping, Zhang Zheng , et al. Thermodynamic analysis of stable wetting states and wetting transition of micro/nanoscale structured surface. Acta Physics Sinica, 2015,64(17):281-292 (in Chinese))
    [37] 柴国钟, 曹彬彬, 张征 等. 多级微结构表面润湿性的尺度效应分析. 浙江工业大学学报, 2018,46(1):7-10, 26
    [37] ( Chai Guozhong, Cao Binbin, Zhang Zheng , et al. The size effect analysis of surface wettability on hierarchical structures. Journal of Zhejiang University of Technology, 2018,46(1):7-10, 26 (in Chinese))
    [38] Lee C, Kim CJ . Maximizing the giant liquid slip on superhydrophobic microstructures by nanostructuring their sidewalls. Langmuir, 25(21):12812-12818
    [39] Verho T, Korhonen JT, Sainiemi L , et al. Reversible switching between superhydrophobic states on a hierarchically structured surface. Proceedings of the National Academy of Sciences of the United States of America, 2012,109(26):10210-10213
    [40] Lv PY, Xue YH, Liu H , et al. Symmetric and Asymmetric Meniscus Collapse in Wetting Transition on Submerged Structured Surfaces. Langmuir, 2015,31(4):1248-1254
    [41] Li Z, Cao MY, Li P , et al. Surface-embedding of functional micro-/nanoparticles for achieving versatile superhydrophobic interfaces. Matter, 2019,1:1-13
    [42] Chen S, Hayakawa S, Shirosaki Y , et al. Sol-Gel synthesis and microstructure analysis of amino-modified hybrid silica nanoparticles from aminopropyltriethoxysilane and tetraethoxysilane. Journal of the American Ceramic Society, 2009,92(9):2074-2082
    [43] Ge DT, Yang LL, Zhang YF , et al. Transparent and superamphiphobic surfaces from one-step spray coating of stringed silica nanoparticle/sol solutions. Particle and Particle System Characterization, 2014,31(7):763-770
    [44] Cassie ABD, Baxter S . Wettability of porous surfaces. Transactions of the Faraday Society, 1944,40:0546-0550
计量
  • 文章访问数:  1864
  • HTML全文浏览量:  323
  • PDF下载量:  187
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-01-16
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回