EI、Scopus 收录
中文核心期刊

在轨组装空间结构面向主动控制的动力学建模

王恩美, 邬树楠, 吴志刚

王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模[J]. 力学学报, 2020, 52(3): 805-816. DOI: 10.6052/0459-1879-19-375
引用本文: 王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模[J]. 力学学报, 2020, 52(3): 805-816. DOI: 10.6052/0459-1879-19-375
Wang Enmei, Wu Shunan, Wu Zhigang. ACTIVE-CONTROL-ORIENTED DYNAMIC MODELLING FOR ON-ORBIT ASSEMBLY SPACE STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 805-816. DOI: 10.6052/0459-1879-19-375
Citation: Wang Enmei, Wu Shunan, Wu Zhigang. ACTIVE-CONTROL-ORIENTED DYNAMIC MODELLING FOR ON-ORBIT ASSEMBLY SPACE STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 805-816. DOI: 10.6052/0459-1879-19-375
王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模[J]. 力学学报, 2020, 52(3): 805-816. CSTR: 32045.14.0459-1879-19-375
引用本文: 王恩美, 邬树楠, 吴志刚. 在轨组装空间结构面向主动控制的动力学建模[J]. 力学学报, 2020, 52(3): 805-816. CSTR: 32045.14.0459-1879-19-375
Wang Enmei, Wu Shunan, Wu Zhigang. ACTIVE-CONTROL-ORIENTED DYNAMIC MODELLING FOR ON-ORBIT ASSEMBLY SPACE STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 805-816. CSTR: 32045.14.0459-1879-19-375
Citation: Wang Enmei, Wu Shunan, Wu Zhigang. ACTIVE-CONTROL-ORIENTED DYNAMIC MODELLING FOR ON-ORBIT ASSEMBLY SPACE STRUCTURE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(3): 805-816. CSTR: 32045.14.0459-1879-19-375

在轨组装空间结构面向主动控制的动力学建模

基金项目: 1)国家自然科学基金资助项目(91748203, 11972102)
详细信息
    通讯作者:

    2)吴志刚, 教授, 主要研究方向为航天器动力学与控制. E-mail: wuzhg@dlut.edu.cn

  • 中图分类号: V448

ACTIVE-CONTROL-ORIENTED DYNAMIC MODELLING FOR ON-ORBIT ASSEMBLY SPACE STRUCTURE

  • 摘要: 在轨组装是未来超大型空间结构最有发展潜力的构建方式之一, 组装过程中空间结构尺寸逐渐增长、动力学特性也随之改变, 给结构主动控制任务带来了新的挑战. 针对这一问题, 提出一种在轨组装空间结构面向主动控制的动力学建模方法. 首先, 建立不同类别组装模块的基础模型库, 以用于后续直接调用; 然后, 定义模块的邻接关系矩阵以描述在轨组装过程中空间结构的变化, 并根据在轨组装任务特点, 设计了面向分布式控制的智能组件结构形式; 在有限元建模方法的基础上提出"节点自由度加载"方法, 利用模块的基础模型库与邻接关系矩阵, 分别建立智能组件和空间结构整体的动力学模型, 该模型可随组装的进行同步自适应更新; 最后, 以在轨组装桁架结构为例, 给出组装碰撞冲击下动力学建模与分布式主动控制数值仿真. 结果表明, 在轨组装过程中桁架结构整体的动力学特性有明显的变化, 主动控制非常必要; 基于提出的建模方法, 可高效地建立构型多样的在轨组装空间结构动力学模型; 智能组件的动力学模型在组装过程中可进一步根据邻接关系矩阵限定更新范围, 适用于在轨组装过程中的分布式主动控制系统设计.
    Abstract: Subject to carrying capacity of a launch vehicle, on-orbit assembly technology has become one of the most promising solutions for building ultra-large space structures in the future. The size of the space structure is gradually increasing, and the dynamic characteristics are changing during the assembly process, which brings new challenge to the dynamic modelling and structural active control. Aiming at this issue, an active-control-oriented dynamic modelling method for the on-orbit assembly space structure is proposed in this paper. As the on-orbit assembly mission possess high regularity and repeatability, the basic model database is firstly established for different modules to improve the modelling efficiency, including the module type, the assembly interface, etc. In order to describe the varying on-orbit assembly space structure, the adjacent matrices of modules are defined. The form of intelligent component (IC) oriented to distributed control are then designed, taking the characteristics of the assembly task into consideration. Based upon the finite element modelling method, the 'node freedom degree loading' method is proposed to develop the dynamic models of the IC and the whole space structure, which are adaptively updated along with assembly. Finally, the numerical simulation are carried out on the truss structure under the assembly impact, including the dynamics analysis and the distributed vibration control. The simulation results show that the dynamic characteristics of truss structure experience obvious changes during the process, and the active vibration control is necessary; the modelling method proposed in this paper, with the established basic model database and the 'node freedom degree loading', applies to various on-orbit assembly space structure; According to the adjacency relation matrix, the active-control-oriented dynamic models of the IC can be updated in a limited range during the assembly process, which reduces the complexity of control system and is suitable for distributed active control of on-orbit assembly structure.
  • Mu RN, Tan SJ, Wu ZG, et al.Coupling dynamics of super large space structures in the presence of environmental disturbances. Acta Astronautica, 2018, 148: 385-395
    曹登庆, 白坤朝, 丁虎等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019, 51(1): 1-13
    (Cao Dengqing, Bai Kunchao, Ding Hu, et al.Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 1-13 (in Chinese))
    胡海岩. 太阳帆航天器的关键技术. 深空探测学报, 2016, 34: 334-344
    (Hu Haiyan.Key technologies of solar sail spacecraft. Journal of Deep Space Exploration, 2016, 34: 334-344 (in Chinese))
    张军徽, 崔洋洋, 佟安. 条带式太阳帆的结构动力学分析. 力学学报, 2019, 51(1): 237-244
    (Zhang Junhui, Cui Yangyang, Tong An.Structural dynamic and stability analysis of a stripped solar sail. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(1): 237-244 (in Chinese))
    胡飞, 宋燕平, 郑士昆等.空间构架式可展天线研究进展与展望.宇航学报, 2018, 39(2): 111-120
    (Hu Fei, Song Yanping, Zheng shikun, et al. Advances and trends in space truss deployable antenna. Journal of Astronautics, 2018, 39(2): 111-120 (in Chinese))
    侯欣宾, 王立, 张兴华等. 多旋转关节空间太阳能电站概念方案设计. 宇航学报, 2015, 36(11): 1332-1338
    (Hou Xinbin, Wang Li, Zhang Xinghua, et al.Concept design on multi-rotary joints SPS. Journal of Astronautics, 2015, 36(11): 1332-1338 (in Chinese))
    李庆军, 邓子辰, 王艳等. 空间太阳能电站的准对日定向姿态. 宇航学报, 2019, 40(1): 29-40
    (Li Qingjun, Deng Zichen, Wang Yan, et al.Quasi-sun-pointing oriented attitude for solar power satellites. Journal of Astronautics. 2019, 40(1): 29-40 (in Chinese))
    王立, 侯欣宾. 空间太阳能电站的关键技术及发展建议. 航天器环境工程, 2014, 314: 343-350
    (Wang Li, Hou Xinbin.Key technologies and some suggestions for the development of space solar power station. Spacecraft Environment, 2014, 314: 343-350 (in Chinese))
    Moses RW, VanLaak J, Johnson SL, et al. Analysis of in-space assembly of modular systems//1st Space Exploration Conference: Continuing the Voyage of Discovery, Orlando, Florida, 2005
    Dorsey JT, Watson JJ.Space assembly of large structural system architectures (SALSSA)//AIAA SPACE 2016, California, 2016
    Flores-Abad A, Ma O, Pham K, et al.A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014, 68: 1-26
    沈晓凤, 曾令斌, 靳永强等. 在轨组装技术研究现状与发展趋势. 载人航天, 2017, 23(2): 228-235, 244
    (Shen Xiaofeng, Zeng Lingbin, Jin Yongqiang, et al.Status and prospect of on-orbit assembly technology. Manned Spaceflight, 2017, 23(2): 228-235, 244 (in Chinese))
    Chen T, Wen H, Hu HY, et al.Output consensus and collision avoidance of a team of flexible spacecraft for on-orbit autonomous assembly. Acta Astronautica, 2016, 121: 271-281
    Xu WF, Meng DS, Chen YQ, et al.Dynamics modeling and analysis of a flexible-base space robot for capturing large flexible spacecraft. Multibody System Dynamics, 2014, 32(3): 357-401
    Meng DS, Lu WN, Xu WF, et al.Vibration suppression control of free-floating space robots with flexible appendages for autonomous target capturing. Acta Astronautica, 2018, 151: 904-918
    朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报, 2019, 514: 1156-1169
    (Zhu An, Chen Li.Mechanical simulation and full order collision avoidance compliant control based on neural network of dual-arm space robot with compliant mechanism capturing satellite. Chinese Journal of Theoretical and Applied Mechanics, 2019, 514: 1156-1169 (in Chinese))
    She YC, Li S, Du B, et al.On-orbit assembly mission planning considering topological constraint and attitude disturbance. Acta Astronautica, 2018, 152: 692-704
    李大明. 空间机器人在轨自主装配动力学与控制. [硕士论文]. 哈尔滨: 哈尔滨工业大学, 2012
    (Li Daming.Dynamics and control of space robot in self-assembling on orbit. [Master Thesis]. Harbin: Harbin Institute of Technology, 2012 (in Chinese))
    Boning P, Dubowsky S.Coordinated control of space robot teams for the on-orbit construction of large flexible space structures. Advanced Robotics, 2010, 24: 303-323
    段宝岩. 空间太阳能发电卫星的几个理论与关键技术问题. 中国科学: 技术科学, 2018, 48(11): 1207-1218
    (Duan Baoyan.The main aspects of the theory and key technologies about space solar power satellite. Scientia Sinica Technologica, 2018, 48(11): 1207-1218 (in Chinese))
    Hu Q, Jia YH, Xu SJ.Adaptive suppression of linear structural vibration using control moment gyroscopes. Journal of Guidance, Control, and Dynamics, 2014, 37(3): 990-996
    魏进, 曹登庆, 于涛. 复合柔性结构全局模态函数提取与状态空间模型构建. 力学学报, 2019, 51(2): 341-353
    (Wei Jin, Cao Dengqing, Yu Tao.Extraction of global mode functions and construction of state space model for a composite flexible structure. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 341-353 (in Chinese))
    丁继锋, 高峰, 钟小平等. 在轨建造中的关键力学问题. 中国科学: 物理学力学天文学, 2019, 49(2): 54-61
    (Ding Jifeng, Gao Feng, Zhong Xiaoping, et al.The key mechanical problems of on-orbit construction. Scientia Sinica: Physica, Mechanica & Astronomica, 2019, 49(2): 54-61 (in Chinese))
    李东旭. 大型挠性结构分散化振动控制--理论与方法(第3版). 北京: 科学出版社, 2013
    (Li Dongxu.Decentralized Vibration Control for Large Flexible Structures--Theories and Methods (Third Edition). Beijing: Science Press, 2013 (in Chinese))
    Jiang JP, Li DX.Optimal placement and decentralized robust vibration control for spacecraft smart solar panel structures. Smart Materials and Structures, 2010, 19(8): 085020
    Jiang JP, Li DX.Decentralized robust vibration control of smart structures with parameter uncertainties. Journal of Intelligent Material Systems and Structures, 2011, 22(2): 137-147
    Xu R, Li DX, Jiang JP, et al.Decentralized adaptive fuzzy vibration control of smart gossamer space structure. Journal of Intelligent Material Systems and Structures, 2017, 28(12): 1670-1681
    Hu Q, Su L, Cao Y, et al.Decentralized simple adaptive control for large space structures. Journal of Sound and Vibration, 2018, 427: 95-119
    D'Andrea R, Dullerud GE. Distributed control design for spatially interconnected systems. IEEE Transactions on Automatic Control, 2003, 48(9): 1478-1495
    王恩美, 邬树楠, 王晓明等. 大型卫星太阳能帆板的分布式振动控制, 航空学报, 2018, 39(1): 221479
    (Wang Enmei, Wu Shunan, Wang Xiaomin, et al.Distributed vibration control for large satellite solar panels. Acta Aeronuatica et Astronautica Sinica, 2018, 39(1): 221479 (in Chinese))
    Ulutas B, Suleman A, Park EJ.LMI-based distributed H$_{\infty }$ control of the Thirty Meter Telescope's primary mirror. Mechatronics, 2015, 28: 55-66
    王帅. 基于控制力矩陀螺的大型空间结构分布式振动抑制. [硕士论文]. 南京: 南京航空航天大学, 2019
    (Wang Shuai.Distributed vibration control for large space structure based on control moment gyroscope. [Master Thesis]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019 (in Chinese))
    郝佳, 段宝岩, 李团结等. 大型星载索网-桁架式可展开天线综合设计平台与数字化建模.空间电子技术, 2015, 12(3): 35-42
    (Hao Jia, Duan Baoyan, Li Tuanjie, et al.Large cable-net with truss deployable satellite antenna design oriented comprehensive software program with parameter modeling and data base. Space Electronic Technology, 2015, 12(3): 35-42 (in Chinese))
    齐朝晖, 黄志浩, 邵珠蕾. 闭环多体系统拓扑结构的动态搭建及其自动规则标号. 动力学与控制学报, 2010, 8(1): 34-38
    (Qi Zhaohui, Huang Zhihao, Shao Zhulei.Dynamically assembly of topological structures of multibody systems with close-loops and automatic regularly labeling. Journal of Dynamics and Control, 2010, 8(1): 34-38 (in Chinese))
    Young KD.Distributed finite-element modeling and control approach for large flexible structures. Journal of Guidance, Control, and Dynamics, 1990, 134: 703-713
    Tang Y, Tomizuka M, Guerrero G, et al.Decentralized robust control of mechanical systems. IEEE Transactions on Automatic Control, 2000, 454: 771-776
    Wang EM, Wu SN, Liu YF, et al.Distributed vibration control of a large solar power satellite. Astrodynamics, 2019, 3: 189-203
  • 期刊类型引用(13)

    1. 符康琦,张乐榕,李庆军,邓子辰,吴志刚,蒋建平. 超大型多模块结构组装过程动力学与姿态控制. 力学学报. 2024(02): 446-459 . 本站查看
    2. 王宁,郭建新. 基于碰撞概率的GEO业务卫星空间安全规避策略. 空间控制技术与应用. 2024(02): 12-22 . 百度学术
    3. 吴志刚,蒋建平,邬树楠,李庆军,王兴,谭述君,邓子辰. 航天结构空间组装动力学与控制研究进展. 力学进展. 2024(02): 344-390 . 百度学术
    4. 黄天翔,卫锦程,王磊,吴爽,李伟杰. 面向在轨组装结构的传感器优化布置方法. 航天器工程. 2024(04): 25-33 . 百度学术
    5. 邬树楠,周威亚,叶哲,李庆军,邓子辰. 大型航天结构在轨组装阶段作动器布局优化. 空间控制技术与应用. 2023(03): 1-9 . 百度学术
    6. 杨胜丽,吴志刚,孟得山,李庆军,邵可. 机器人在轨组装结构的耦合动力学与步态优化. 力学学报. 2023(07): 1548-1558 . 本站查看
    7. 田丹. 基于MEMS传感器的室内外多源融合导航系统设计. 计算机测量与控制. 2022(08): 289-295 . 百度学术
    8. 王启生,蒋建平,李庆军,江国期,邓子辰. 空间机器人组装超大型结构的动力学分析. 应用数学和力学. 2022(08): 835-845 . 百度学术
    9. 包亚杰,张伟社. 改进神经网络的汽车车身结构动力学建模分析. 计算机仿真. 2022(11): 189-192+471 . 百度学术
    10. 黄志来,李新圆,金栋平. 单框架控制力矩陀螺输出特性分析. 力学学报. 2021(02): 511-523 . 本站查看
    11. 周威亚,邬树楠,王恩美. 基于一致性理论的卫星太阳能帆板分布式振动控制. 南京航空航天大学学报. 2021(06): 909-917 . 百度学术
    12. 杜向南,杨震. 航天器单脉冲机动可达域求解算法. 力学学报. 2020(06): 1621-1631 . 本站查看
    13. 李皓皓,张进,罗亚中. 基于机动目标滤波估计的航天器主动规避策略. 力学学报. 2020(06): 1560-1568 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  2205
  • HTML全文浏览量:  462
  • PDF下载量:  355
  • 被引次数: 16
出版历程
  • 收稿日期:  2019-12-26
  • 刊出日期:  2020-06-09

目录

    /

    返回文章
    返回