EI、Scopus 收录
中文核心期刊

多刚体系统分离策略及释放动力学研究

罗操群, 孙加亮, 文浩, 胡海岩, 金栋平

罗操群, 孙加亮, 文浩, 胡海岩, 金栋平. 多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. DOI: 10.6052/0459-1879-19-307
引用本文: 罗操群, 孙加亮, 文浩, 胡海岩, 金栋平. 多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. DOI: 10.6052/0459-1879-19-307
Luo Caoqun, Sun Jialiang, Wen Hao, Hu Haiyan, Jin Dongping. RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. DOI: 10.6052/0459-1879-19-307
Citation: Luo Caoqun, Sun Jialiang, Wen Hao, Hu Haiyan, Jin Dongping. RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. DOI: 10.6052/0459-1879-19-307
罗操群, 孙加亮, 文浩, 胡海岩, 金栋平. 多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. CSTR: 32045.14.0459-1879-19-307
引用本文: 罗操群, 孙加亮, 文浩, 胡海岩, 金栋平. 多刚体系统分离策略及释放动力学研究[J]. 力学学报, 2020, 52(2): 503-513. CSTR: 32045.14.0459-1879-19-307
Luo Caoqun, Sun Jialiang, Wen Hao, Hu Haiyan, Jin Dongping. RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. CSTR: 32045.14.0459-1879-19-307
Citation: Luo Caoqun, Sun Jialiang, Wen Hao, Hu Haiyan, Jin Dongping. RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 503-513. CSTR: 32045.14.0459-1879-19-307

多刚体系统分离策略及释放动力学研究

基金项目: 1)载人航天预研项目(060101);装备预研基金项目(6140210010202)
详细信息
    通讯作者:

    金栋平

  • 中图分类号: O313

RESEARCH ON SEPARATION STRATEGY AND DEPLOYMENT DYNAMICS OF A SPACE MULTI-RIGID-BODY SYSTEM

  • 摘要: 紧密连接的多刚体系统可在脱离运载航天器后在轨自主分离,无需多次利用航天器发射装置或在航天器中安装多个发射装置进行分离释放,从而有效提高运载航天器空间利用率, 简化分离释放操作和降低碰撞风险.本文针对多刚体系统的在轨分离释放问题, 研究在轨分离策略及释放过程动力学.首先, 考虑刚体相对运动及姿态变化,基于虚功原理及自然坐标方法建立单个刚体的动力学模型.考虑多刚体系统在轨分离释放阶段的轨道运动和连接约束变化,计入分离时刚体间的相互作用,利用拉格朗日乘子法获得含连接约束的非线性动力学模型. 考虑到实际工程应用,在多刚体系统分离释放阶段,通过安装在刚体间每个接触表面4个角上的弹射装置实现自主分离. 其次,为保证分离过程中刚体之间无碰撞发生, 规划了多刚体系统的分离时序,并基于不同弹射方向及分离顺序设计了两种分离释放方案. 最后,通过算例研究分析了在轨分离释放过程中刚体的非线性动力学行为,验证了分离释放方案的有效性.
    Abstract: The paper focuses on the separation and deployment dynamics of an on-orbit compactly connected multi-rigid-body (MRB) system, which could separate autonomously from a carrier spacecraft. Based on the focused MRB system, it is not necessary to repeatedly use the launcher of the carrier spacecraft or install multiple launchers in the spacecraft to separate the MRB system. This is advantageous because it can effectively improve the space utilization rate of the spacecraft, simplify the separation deployment operations and reduce the risk of collision between rigid bodies. To realize the separation of such a MRB system, the paper presents an investigation on its on-orbit dynamics and the design of collision-free separation deployment schemes. Firstly, a dynamic model of a single rigid body is established based on the principle of virtual work and the Natural Coordinate Formulation (NCF) method accounting for the relative motion between rigid bodies and attitude changes of each rigid body. Considering the orbital motion, the variations of connecting constraints of the MRB system and the interactions between rigid bodies during the separation, the governing nonlinear dynamic equations including constraints of the system are obtained with a method of Lagrange multipliers. With practical engineering applications taken into consideration, the separation deployment of MRB system is realized through ejection mechanisms mounted on the four corners of each contact surface between rigid bodies. Secondly, the timing sequences of separation maneuvers are specially programmed and two separation schemes are developed by adjusting different ejection directions and ejection sequences to guarantee the non-collision between rigid bodies in the separation deployment. Finally, numerical case studies are presented for investigating the nonlinear dynamic behaviors of rigid bodies and demonstrating the effectiveness of separation schemes.
  • [1] 田强, 刘铖, 李培 等. 多柔体系统动力学研究进展与挑战. 动力学与控制学报, 2017,15(5):385-405
    [1] ( Tian Qiang, Liu Cheng, Li Pei , et al. Advances and challenges in dynamics of flexible multibody systems. Journal of Dynamics and Control, 2017,15(5):385-405 (in Chinese))
    [2] 孙加亮, 田强, 胡海岩 . 多柔体系统动力学建模与优化研究进展. 力学学报, 2019,51(6):1565-1586
    [2] ( Sun Jialiang, Tian Qiang, Hu Haiyan . Advances in dynamic modeling and optimization of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(6):1565-1586 (in Chinese))
    [3] 胡海岩, 田强, 张伟 等. 大型网架式可展开空间结构的非线性动力学与控制. 力学进展, 2013,43(4):390-414
    [3] ( Hu Haiyan, Tian Qiang, Zhang Wei , et al. Nonlinear dynamics and control of large deployable space structures composed of trusses and meshes. Advances in Mechanics, 2013,43(4):390-414 (in Chinese))
    [4] 齐朝晖, 曹艳, 王刚 . 多柔体系统数值分析的模型降噪方法. 力学学报, 2018,50(4):863-870
    [4] ( Qi Zhaohui, Cao Yan, Wang Gang . Model smoothing methods in numerical analysis of flexible multibody systems. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):863-870 (in Chinese))
    [5] 曹登庆, 白坤朝, 丁虎 等. 大型柔性航天器动力学与振动控制研究进展. 力学学报, 2019,51(1):1-13
    [5] ( Cao Dengqing, Bai Kunzhao, Ding Hu , et al. Advances in dynamics and vibration control of large-scale flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):1-13 (in Chinese))
    [6] 王晓军, 吕敬, 王琪 . 含摩擦滑移铰平面多刚体系统动力学的数值算法. 力学学报, 2019,51(1):209-217
    [6] ( Wang Xiaojun, Lü Jing, Wang Qi . A numerical method for dynamics of planar multi-rigid-body system with frictional translational joints based on LuGre friction model. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):209-217 (in Chinese))
    [7] 高璎园, 王妮炜, 陆洲 . 卫星互联网星座发展研究与方案构想. 中国电子科学研究院学报, 2019,14(8):875-881
    [7] ( Gao Yingyuan, Wang Niwei, Lu Zhou . The development research and construction suggestion of satellite internet constellations. Journal of China Academy of Electronics and Information Technology, 2019,14(8):875-881 (in Chinese))
    [8] Foust J . SpaceX's space-Internet woes: Despite technical glitches, the company plans to launch the first of nearly 12,000 satellites in 2019. IEEE Spectrum, 2018,56(1):50-51
    [9] Smyth J, Kroupnik G, Iris S , et al. Radarsat constellation mission data policy// International Geoscience and Remote Sensing Symposium, Valencia, Spain, 2018
    [10] Chen T, Wen H . Autonomous assembly with collision avoidance of a fleet of flexible spacecraft based on disturbance observer. Acta Astronautica, 2018,147:86-96
    [11] Chen T, Wen H, Hu H , et al. On-orbit assembly of a team of flexible spacecraft using potential field based method. Acta Astronautica, 2017,133:221-232
    [12] Wong B, Misra A . Planar dynamics of variable length multi-tethered spacecraft near collinear Lagrangian points. Acta Astronautica, 2008,63(11-12):1178-1187
    [13] Shan M, Guo J, Gill E . Review and comparison of active space debris capturing and removal methods. Progress in Aerospace Sciences, 2016,80:18-32
    [14] Shi G, Zhu Z, Zhu Z . Dynamics and control of tethered multi-satellites in elliptic orbits. Aerospace Science and Technology, 2019,91:41-48
    [15] 范高洁, 柏林厚, 魏传锋 等. 航天器在轨释放安全性分析与仿真研究. 航天器环境工程, 2017,34(4):403-409
    [15] ( Fan Gaojie, Bo Linhou, Wei Chuanfen , et al. Safety analysis and simulation of spacecraft on-orbit releasing. Spacecraft Environmental Engineering, 2017,34(4):403-409 (in Chinese))
    [16] Kιlι? ?, Scholz T, Asma C . Deployment strategy study of QB50 network of CubeSats// 6th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, 2013
    [17] Handschuh DA, Bourgeois E . Optimization of constellation jettisoning regards to short term collision risks. Acta Astronautica, 2018,145:284-292
    [18] Jeyakumar D, Rao B . Dynamics of satellite separation system. Journal of Sound and Vibration, 2006,297(1-2):444-455
    [19] Liu P, Chen X, Zhao Y . Safe deployment of cluster-flying nano-satellites using relative E/I vector separation. Advances in Space Research, 2019,64(4):964-981
    [20] Zhang J, Zhou J, Deng Y . Cubesat separation parameter optimization// 12th International Conference on Signal Processing and Communication Systems, Cairns,Australia, 2018
    [21] Bridges CP, Sauter L, Palmer P . Formation deployment & separation simulation of multi-satellite Scenarios using SatLauncher// Aerospace Conference, Big Sky, MT,USA, 2011
    [22] Wermuth M, Gaias G, D'Amico S . Safe picosatellite release from a small satellite carrier. Journal of Spacecraft and Rockets, 2015,52(5):1338-1347
    [23] 商显扬, 杜朋, 王桂娇 等. 一箭三星发射结构布局及斜推分离技术研究. 强度与环境, 2018,45(1):7-11
    [23] ( Shang Xianyang, Du Peng, Wang Guijiao , et al. Research of structural layout and inclined separation for one vehicle with triple-satellites. Structure & Environment Engineering, 2018,45(1):7-11 (in Chinese))
    [24] De Jalon JG, Bayo E . Kinematic and Dynamic Simulation of MultiBody Systems: The Real-Time Challenge. New-York: Springer, 2011
    [25] De Jalon JG, Unda J, Avello A . Natural coordinates for the computer analysis of multibody systems. Computer Methods in Applied Mechanics and Engineering, 1986,56(3):309-327
    [26] Antman SS, Osborn JE . The principle of virtual work and integral laws of motion. Archive for Rational Mechanics and Analysis, 1979,69(3):231-262
    [27] Wen H, Zhu Z, Jin D , et al. Constrained tension control of a tethered space-tug system with only length measurement. Acta Astronautica, 2016,119:110-117
    [28] Newmark NM . A method of computation for structural dynamics. Journal of the Engineering Mechanics Division, 1959,85(3):67-94
    [29] Fung TC . Complex-time-step Newmark methods with controllable numerical dissipation. International Journal for Numerical Methods in Engineering, 1998,41(1):65-93
    [30] Chung J, Hulbert G . A time integration algorithm for structural dynamics with improved numerical dissipation: The generalized-a method. Journal of Applied Mechanics-Transactions of the ASME, 1993,60(2):371-375
    [31] Arnold M, Brüls O . Convergence of the generalized-$\alpha $ scheme for constrained mechanical systems. Multibody System Dynamics, 2007,18(2):185-202
    [32] 邵慧萍, 蔡承文 . 结构动力学方程数值积分的三参数算法. 应用力学学报, 1988,5(4):76-81, 137
    [32] ( Shao Huiping, Cai Chengwen . A modified lanczos algorithm for computing structural eigenvalued problems. Chinese Journal of Applied Mechanics, 1988,5(4):76-81, 137 (in Chinese))
    [33] Buckley S, Fosness E, Gammill W . Deployment and release devices efforts at the air force research laboratory space vehicles directorate// AIAA Space 2001-Conference and Exposition, Albuquerque, NM, USA, 2018
    [34] 仲作阳, 张海联, 周建平 等. 航天器非火工连接分离技术研究综述. 载人航天, 2019,25(1):128-142
    [34] ( Zhong Zuoyang, Zhang Hai Lian, Zhou Jianping , et al. Review of non-pyrotechnic connection and separation technology of spacecraft. Manned Spaceflight, 2019,25(1):128-142 (in Chinese))
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-11-06
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回