EI、Scopus 收录
中文核心期刊

颗粒毛细效应影响因素的离散元分析

张华腾, 凡凤仙, 王志强

张华腾, 凡凤仙, 王志强. 颗粒毛细效应影响因素的离散元分析[J]. 力学学报, 2020, 52(2): 442-450. DOI: 10.6052/0459-1879-19-301
引用本文: 张华腾, 凡凤仙, 王志强. 颗粒毛细效应影响因素的离散元分析[J]. 力学学报, 2020, 52(2): 442-450. DOI: 10.6052/0459-1879-19-301
Zhang Huateng, Fan Fengxian, Wang Zhiqiang. DEM ANALYSIS OF FACTORS INFLUENCING THE GRANULAR CAPILLARITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 442-450. DOI: 10.6052/0459-1879-19-301
Citation: Zhang Huateng, Fan Fengxian, Wang Zhiqiang. DEM ANALYSIS OF FACTORS INFLUENCING THE GRANULAR CAPILLARITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 442-450. DOI: 10.6052/0459-1879-19-301
张华腾, 凡凤仙, 王志强. 颗粒毛细效应影响因素的离散元分析[J]. 力学学报, 2020, 52(2): 442-450. CSTR: 32045.14.0459-1879-19-301
引用本文: 张华腾, 凡凤仙, 王志强. 颗粒毛细效应影响因素的离散元分析[J]. 力学学报, 2020, 52(2): 442-450. CSTR: 32045.14.0459-1879-19-301
Zhang Huateng, Fan Fengxian, Wang Zhiqiang. DEM ANALYSIS OF FACTORS INFLUENCING THE GRANULAR CAPILLARITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 442-450. CSTR: 32045.14.0459-1879-19-301
Citation: Zhang Huateng, Fan Fengxian, Wang Zhiqiang. DEM ANALYSIS OF FACTORS INFLUENCING THE GRANULAR CAPILLARITY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 442-450. CSTR: 32045.14.0459-1879-19-301

颗粒毛细效应影响因素的离散元分析

基金项目: 1)国家自然科学基金(51976130);上海市科委科研计划(13DZ2260900)
详细信息
    通讯作者:

    凡凤仙

  • 中图分类号: TQ022.3

DEM ANALYSIS OF FACTORS INFLUENCING THE GRANULAR CAPILLARITY

  • 摘要: 颗粒毛细效应是指将一根细管插入填充有颗粒物质的容器中并对管施加竖直振动时颗粒在管内上升并最终达到一个稳定的高度的现象, 该现象为颗粒物料的逆重力输运提供了一种潜在的技术途径. 为探究颗粒毛细效应的影响因素, 采用离散元方法, 模拟再现了颗粒毛细效应过程,展示了不同管径下颗粒竖直方向速度演变特性, 考察了不同容器宽度和振动条件下颗粒最终毛细上升高度随管径的演变规律. 结果表明, 在容器宽度与粒径比为40、管振幅与粒径比为14.33、管振动频率为12 Hz情况下, 管径与粒径比$D/d = 3.33$时, 管内颗粒堵塞严重, 使得颗粒上升缓慢,并造成颗粒柱中断; $D/d = 8.33$时, 起初毛细上升高度增加迅速, 随后毛细上升高度的增大逐渐减缓, 管内颗粒在管径方向几乎不存在速度梯度; $D/d =15$时, 随着颗粒毛细上升高度的增大, 管内颗粒柱分离为速度截然不同的两层, 上层颗粒在管径方向几乎不存在速度梯度, 而下层颗粒存在明显的速度梯度.研究还发现, 在毛细效应能够发生的管径范围内, 存在一个对应于颗粒最终毛细上升高度最大值的临界管径, 当管径小于临界管径时, 颗粒最终毛细上升高度随管径的增大而增大, 当管径大于临界管径时, 颗粒最终毛细上升高度随管径的增大而趋于减小; 增大容器宽度,临界管径有所增大; 增大振幅、适当提高频率能够有效促进临界管径的增大.
    Abstract: Granular capillarity refers to the phenomenon that when a narrow tube is vertically inserted into a container filled with particles and then set into vertical vibration, the particles rise up along the tube and eventually reach a certain height. This provides a potential technical method for the transportation of granular materials against gravity. To explore the factors influencing the granular capillarity, the processes of granular capillarity were numerically investigated using the discrete element method (DEM). On this basis, the evolutions of vertical velocities of particles at different tube diameters were shown, and the dependences of the final capillary height of the particles on the tube diameter at different container widths and vibrational parameters were examined. The results obtained under the conditions with the container-width-to-particle-diameter ratio of 40, vibration-amplitude-to-particle-diameter ratio of 14.33 and vibration frequency of 12 Hz show that at the tube-to-particle diameter ratio $D/d = 3.33$ severe jamming occurs for the particles in the tube, which makes the particles rise slowly and leads to a discontinuous granular column within the tube. At $D/d = 8.33$, the granular capillary height rises rapidly at the beginning, and then the increasing rate of the capillary height decreases gradually. In this case, there is almost no particle velocity gradient along the tube radius. However, at $D/d=15$, as the granular column height within the tube increases, the particles in the tube separated into two layers. In the upper layer, almost no particle velocity gradient along the tube radius is observed, whereas in the lower layer obvious velocity gradient can be found. It is also found that for the tube diameter range in which the granular capillarity can occur, there exists a critical tube diameter that corresponds to the maximal final capillary height. When the tube diameter is less than the critical tube diameter, the final capillary height increases with the tube diameter, whereas when the tube size is greater than the critical tube diameter, the final capillary height tends to decrease with the tube diameter. Moreover, increasing the container width leads to an increase in the critical tube diameter, while increasing the vibration amplitude of the tube and appropriately increasing the vibration frequency can effectively promote the increase of the critical tube diameter.
  • [1] Gerner HJV, Hoef MAVD, Meer DVD , et al. Interplay of air and sand: Faraday heaping unravelled. Physical Review E, 2007,76(5):051305
    [2] Darias JR, Sánchez I, Gutiérrez G . Experimental study on the vertical motion of grains in a vibrated U-tube. Granular Matter, 2011,13(1):13-17
    [3] Eshuis P, Ko VDW, Devaraj VDM , et al. Phase diagram of vertically shaken granular matter. Physics of Fluids, 2007,19(12):123301
    [4] Fan FX, Parteli EJR, P?schel T . Origin of granular capillarity revealed by particle-based simulations. Physical Review Letters, 2017,118(21):218001
    [5] Fan FX, Liu J, Parteli EJR , et al. Vertical motion of particles in vibration-induced granular capillarity. EPJ Web of Conferences, 2017,140:16008
    [6] 凡凤仙, 王志强, 刘举 等. 竖直振动管中颗粒毛细效应的离散元模拟. 力学学报, 2019,51(2):415-424
    [6] ( Fan Fengxian, Wang Zhiqiang, Liu Ju , et al. DEM simulation of granular capillarity in vertically vibrating tube. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):415-424 (in Chinese))
    [7] Liu CP, Wu P, Wang L . Particle climbing along a vibrating tube: A vibrating tube that acts as a pump for lifting granular materials from a silo. Soft Matter, 2013,9(19):4762-4766
    [8] Liu CP, Zhang FW, Wu P , et al. Effect of hoisting tube shape on particle climbing. Powder Technology, 2014,259:137-143
    [9] 张富翁, 王立, 刘传平 等. 竖直振动管中颗粒的上升运动. 物理学报, 2014,63(1):014501
    [9] ( Zhang Fuweng, Wang Li, Liu Chuanping , et al. The rising motion of grains in a vibrating pipe. Acta Physica Sinica, 2014,63(1):014501 (in Chinese))
    [10] Zhang FW, Wang L, Liu CP , et al. Climbing motion of grains in vibrating tubes with different geometries. Advanced Powder Technology, 2017,28(2):356-362
    [11] Zhang FW, Cronin K, Lin Y , et al. Effects of vibration parameters and pipe insertion depth on the motion of particles induced by vertical vibration. Powder Technology, 2018,333:421-428
    [12] Zhang FW, Cronin K, Lin Y , et al. Sealing pipe top enhancing transportation of particulate solids inside a vertically vibrating pipe. Powder Technology, 2019,343:383-391
    [13] Liu Y, Zhao J . Experimental study and analysis on the rising motion of grains in a vertically-vibrated pipe. Chinese Physics B, 2015,24(3):034502
    [14] Zhang N, Cheng B, Baoyin H . A new physical model on the capillary phenomenon of granular particles. Applied Mathematics and Mechanics (English Edition), 2019,40(1):127-138
    [15] 刘举, 白鹏博, 凡凤仙 等. 竖直振动下颗粒物质的行为模式研究进展. 化工进展, 2016,35(7):1956-1962
    [15] ( Liu Ju, Bai Pengbo, Fan Fengxian , et al. Research progress on behavior mode of granular matter under vertical vibration. Chemical Industry & Engineering Progress, 2016,35(7):1956-1962 (in Chinese))
    [16] Xu Y, Musser J, Li T , et al. Particles climbing along a vertically vibrating tube: Numerical simulation using the discrete element method (DEM). Powder Technology, 2017,320:304-312
    [17] 谭援强, 肖湘武, 张江涛 等. 尼龙粉末在SLS预热温度下的离散元模型参数确定及其流动特性分析. 力学学报, 2019,51(1):56-63
    [17] ( Tan Yuanqiang, Xiao Xiangwu, Zhang Jiangtao , et al. Determination of discrete element model contact parameters of nylon powder at SLS preheating temperature and its flow characteristics. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):56-63 (in Chinese))
    [18] 钱劲松, 陈康为, 张磊 . 粒料固有各向异性的离散元模拟与细观分析. 力学学报, 2018,50(5):1041-1050
    [18] ( Qian Jinsong, Chen Kangwei, Zhang Lei . Simulation and micro-mechanics analysis of inherent anisotropy of granular by distinct element method. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1041-1050 (in Chinese))
    [19] 熊迅, 李天密, 马棋棋 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报, 2018,50(3):622-632
    [19] ( Xiong Xun, Li Tianmi, Ma Qiqi , et al. Discrete element simulations of the high velocity expansion and fragmentation of quartz glass rings. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):622-632 (in Chinese))
    [20] Brilliantov NV, Spahn F, Hertzsch JM , et al. Model for collisions in granular gases. Physical Review E, 1996,53(5):5382-5392
    [21] Cundall PA, Strack OD . A discrete numerical model for granular assemblies. Geotechnique, 1979,29(1):47-65
    [22] Schwager T, P?schel T . Coefficient of restitution for viscoelastic spheres: The effect of delayed recovery. Physical Review E, 2008,78(5):051304
    [23] Schwager T, P?schel T . Coefficient of normal restitution of viscous particles and cooling rate of granular gases. Physical Review E, 1998,57(1):650-654
    [24] Ramírez R, P?Schel T, Brilliantov NV , et al. Coefficient of restitution of colliding viscoelastic spheres. Physical Review E, 1999,60(4):4465-4472
    [25] Müller P, P?schel T . Collision of viscoelastic spheres: Compact expressions for the coefficient of normal restitution. Physical Review E, 2011,84:021302
    [26] Rycroft CH, Orpe AV, Kudrolli A . Physical test of a particle simulation model in a sheared granular system. Physical Review E, 2009,80(3):031305
    [27] Ai J, Chen JF, Rotter JM , et al. Assessment of rolling resistance models in discrete element simulations. Powder Technology, 2011,206:269-282
    [28] Parteli EJR, Schmidt J, Blümel C , et al. Attractive particle interaction forces and packing density of fine glass powders. Scientific Reports, 2014,4:6227
    [29] Verbücheln F, Parteli EJR, P?schel T . Helical inner-wall texture prevents jamming in granular pipe flows. Soft Matter, 2015,11(21):4295-4305
    [30] Parteli EJR, P?schel T . Particle-based simulation of powder application in additive manufacturing. Powder Technology, 2015,288:96-102
    [31] Kloss C, Goniva C, Hager A , et al. Models, algorithms and validation for opensource DEM and CFD-DEM. Progress in Computational Fluid Dynamics, 2012,12(2/3):140-152
    [32] 赵永志, 程易, 郑津洋 . 三方程线性弹性-阻尼 DEM 模型及碰撞参数确定. 计算力学学报, 2009,26(2):239-244
    [32] ( Zhao Yongzhi, Cheng Yi, Zheng Jinyang . Three-equation linear spring-dashpot DEM model and the determination of contact parameters. Chinese Journal of Computational Mechanics, 2009,26(2):239-244 (in Chinese))
    [33] Ng TT, Zhou W, Ma G , et al. Damping and particle mass in DEM simulations under gravity. Journal of Engineering Mechanics, 2015,141(6):04014167
    [34] Sch?fer J, Dippel S, Wolf DE . Force schemes in simulations of granular materials. Journal de Physique I France, 1996,6(1):5-20
  • 期刊类型引用(1)

    1. 于天林,凡凤仙. 竖直振动激励下颗粒毛细上升行为研究. 物理学报. 2022(10): 332-339 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  1941
  • HTML全文浏览量:  419
  • PDF下载量:  125
  • 被引次数: 4
出版历程
  • 收稿日期:  2019-10-29
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回