EI、Scopus 收录
中文核心期刊

台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应

张志伟, 殷翔宇, 朱春英, 马友光, 付涛涛

张志伟, 殷翔宇, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. DOI: 10.6052/0459-1879-19-251
引用本文: 张志伟, 殷翔宇, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. DOI: 10.6052/0459-1879-19-251
Zhang Zhiwei, Yin Xiangyu, Zhu Chunying, Ma Youguang, Fu Taotao. SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. DOI: 10.6052/0459-1879-19-251
Citation: Zhang Zhiwei, Yin Xiangyu, Zhu Chunying, Ma Youguang, Fu Taotao. SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. DOI: 10.6052/0459-1879-19-251
张志伟, 殷翔宇, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. CSTR: 32045.14.0459-1879-19-251
引用本文: 张志伟, 殷翔宇, 朱春英, 马友光, 付涛涛. 台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应[J]. 力学学报, 2020, 52(2): 420-430. CSTR: 32045.14.0459-1879-19-251
Zhang Zhiwei, Yin Xiangyu, Zhu Chunying, Ma Youguang, Fu Taotao. SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. CSTR: 32045.14.0459-1879-19-251
Citation: Zhang Zhiwei, Yin Xiangyu, Zhu Chunying, Ma Youguang, Fu Taotao. SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 420-430. CSTR: 32045.14.0459-1879-19-251

台阶式并行微通道内气泡群自组装行为及其对气泡生成的反馈效应

基金项目: 1)国家自然科学基金资助项目(91634105);国家自然科学基金资助项目(21878212);国家自然科学基金资助项目(21776200)
详细信息
    通讯作者:

    付涛涛

  • 中图分类号: O359.1

SELF-ASSEMBLY OF BUBBLE SWARM IN LARGE CAVITIES IN STEP-TYPE PARALLELIZED MICROCHANNELS AND ITS FEEDBACK ON BUBBLE FORMATION

  • 摘要: 台阶式微通道乳化装置因易于高通量生产均一性的气泡及液滴而受到关注.本文利用高速摄像仪研究了台阶式并行微通道装置空腔内的气泡群复杂行为及其对气泡生成的反馈效应.实验设计的操作变量为气液相进出口位置、气相流速和液相流速. 在实验操作范围内,共发现了气泡的单管生成模式和多管生成模式.研究了空腔内气泡群复杂行为随操作条件的变化趋势. 发现在受限空间内,气泡在水平面内发生挤压堵塞能够自组装成具有特定几何特点的二维晶格,分别为有序的行三角晶格、有序的竖三角晶格和无序的三角晶格.晶格结构与气相压力密切相关; 同时, 气泡界面能量随着气相压力的增大而增大.运用介尺度、能量和活化等概念分析了气泡群复杂行为对气泡生成方式的影响,充分阐释了受限空间内气泡群的介尺度效应.以变异系数CV来表示气泡的均匀性特征, 考察了气泡晶格自组装行为的控制因素.结果表明: 气泡的自组装路径由气泡尺寸及其分布决定,有序的三角晶格变异系数小于5%, 无序的三角晶格变异系数大于5%.
    Abstract: Step-emulsification microfluidic devices attract attentions due to the ability for the high-throughput production of bubbles and droplets. In this study, the bubble behavior of the bubble swarm in the cavity in a step-type parallelized microchannel and its feedback effect on bubble formation were studied by using a high-speed camera. The operating variables were the position of gas/liquid phase inlet, gas flow rate and liquid flow rate. Two bubble generation modes were observed: single-tube generation mode and multi-tube generation mode. The variation trend of the complex behavior of bubble swarm in the cavity with operating conditions was studied. It is found that in the confined space, the bubble can be self-assembled into a two-dimensional lattice with geometric features in the horizontal plane: including an ordered row triangular lattice, an ordered vertical triangular lattice, and a disordered triangular lattice. As the gas pressure changes, the crystal lattice changes, the bubble surface area becomes larger, and the interfacial energy becomes larger. Then, the effects of complex behavior of bubble swarm on bubble generation were analyzed by using the concepts of mesoscale, energy and activation. These fully explain the mesoscale characteristics of bubble behavior in confined spaces. The determinants of the bubble self-assembly path are revealed. It is indicated that the self-assembly path of bubbles is determined by the size and distribution of bubbles. The coefficient of variation of CV is used to represent the crystal structure of bubbles, and the coefficient of variation for the ordered triangular lattice is less than 5%, while that for the disordered triangular lattice is greater than 5%.
  • [1] Fu TT, Ma YG, Funfschilling D , et al. Bubble formation and breakup mechanism in a microfluidic flow-focusing device. Chemical Engineering Science, 2009,64(10):2392-2400
    [2] 王兆伟, 武晓刚, 陈魁俊 等. 一种力-电协同驱动的细胞微流控培养腔理论模型. 力学学报, 2018,50(1):124-137
    [2] ( Wang Zhaowei, Wu Xiaogang, Chen Kuijun , et al. A theoretical microfluidic flow model for the cell culture chamber under the pressure gradient and electric field driven loads. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):124-137 (in Chinese))
    [3] Zhao YC, Chen GW, Yuan Q . Liquid-liquid two-phase flow patterns in a rectangular microchannel. AICHE Journal, 2006,52(12):4052-4060
    [4] 韩宇, 刘志军, 王云峰 . T型微通道反应器内气液两相流动机制及影响因素. 力学学报, 2019,51(2):441-449
    [4] ( Han Yu, Liu Zhijun, Wang Yunfeng . Gas-liquid two-phase flowregimes and impact factors in T-junction microreactor. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):441-449 (in Chinese))
    [5] Li GH, Yuan XG, Song WQ . Gradient mesh approach for capturing characteristics of gas-liquid Taylor flow in microchannels. Chemcial Industry and Engineering, 2016,33(5):86-95
    [6] 高天达, 孙姣, 范赢 等. 基于PIV 技术分析颗粒在湍流边界层中的行为. 力学学报, 2019,51(1):103-110
    [6] ( Gao Tianda, Sun Jiao, Fan Ying , et al. PIV experimental investigation on the behavior of particle in the turbulent boundary layer. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):103-110 (in Chinese))
    [7] Yuan Q, Chen GW, Yue J . Gas-liquid microreaction technology: recent developments and future challenges. Chinese Journal of Chemical Engineering, 2008,16(5):663-669
    [8] Groisman A, Enzelberger M, Quake SR . Microfluidic memory and control devices. Science, 2003,300(5621):955-958
    [9] 霍元平, 王军锋, 左子文 等. 滴状模式下液桥形成及断裂的电流体动力学特性研究. 力学学报, 2019,51(2):425-431
    [9] ( Huo Yuanping, Wang Junfeng, Zuo Ziwen , et al. Electrohydrodynamic characteristics of liquid bridge formation at the dripping mode of electrosprays. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(2):425-431 (in Chinese))
    [10] J?hnisch K, Hessel V, L?we H , et al. Chemistry in microstructured reactors. Angewandte Chemie International Edition, 2004,43:406-446
    [11] Zhang J, Coulston RJ, Jones ST , et al. One-step fabrication of supramolecular microcapsules from microfluidic droplets. Science, 2012,335:690-694
    [12] 王彦, 王靖涛 . 微流控技术制备聚酰胺微胶囊的工艺研究. 化学工业与工程, 2018,35(6):20-25
    [12] ( Wang Yan, Wang Jingtao . Preparation of polyamide microcapsules based on microfluidics. Chemcial Industry and Engineering, 2018,35(6):20-25 (in Chinese))
    [13] Leclerc A, Alame M, Schweich D , et al. Gas-liquid selective oxidations with oxygen under explosive conditions in a microstructured reactor. Lab on a Chip, 2008,8:814-817
    [14] Al-Rawashdeh M, Zalucky J, Müller C , et al. Phenylacetylene hydrogenation over [Rh(NBD)(PPh3)2]BF4 catalyst in a numbered-up microchannels reactor. Industrial & Engineering Chemistry Research, 2013,52:11516-11526
    [15] Lang P, Hill M, Krossing I , et al. Multiphase minireactor system for direct fluorination of ethylene carbonate. Chemical Engineering Journal, 2012,179:330-337
    [16] 李韡, 张昱, 孟昊 . 微通道中液-液萃取传质特性的研究. 化学工业与工程, 2013,30(4):36-41
    [16] ( Li Wei, Zhang Yu, Meng Hao . Mass transfer characteristics of liquid-liquid extraction in microchannel. Chemcial Industry and Engineering, 2013,30(4):36-41 (in Chinese))
    [17] Anna SL . Droplets and bubbles in microfluidic devices. Annual Review of Fluid Mechanics, 2016,48:285-309
    [18] Rodríguez J, Sevilla A, Martínez-Bazán C , et al. Generation of microbubbles with applications to industry and medicine. Annual Review of Fluid Mechanics, 2015,47:405-429
    [19] Lu YT, Fu TT, Zhu CY , et al. Pinch-off mechanism for Taylor bubble formation in a microfluidic flow-focusing device. Microfluidics and Nanofluidics, 2014,16:1047-1055
    [20] Fu TT, Ma YG . Bubble formation and breakup dynamics in microfluidic devices: A review. Chemical Engineering Science, 2015,135:343-372
    [21] Nisisako T, Torii T, Higuchi T . Droplet formation in a microchannel network. Lab on a Chip, 2002,2(1):24-26
    [22] van Dijke KC, Karin CP, Schro?n GH , et al. Microchannel emulsification: from computational fluid dynamics to predictive analytical model. Langmuir, 2008,24(18):10107-10115
    [23] Alessandro Ofner IM, Hagander M, Dutto A , et al. Controlled massive encapsulation via tandem step emulsification in glass. Advanced Functional Materials, 2018,29(4):1-9
    [24] Stoffel M, Wahl S, Lorenceau E , et al. Bubble production mechanism in a microfluidic foam generator. Physical Review Letters, 2012,108(19):198302
    [25] Seo M, Nie Z, Xu S , et al. Microfluidics: from dynamic lattices to periodic arrays of polymer disks. Langmuir, 2005,21(11):4773-4775
    [26] Whitesides GM, Boncheva M . Beyond molecules: self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences of the United States of America. 2002,99(8):4769-4774
    [27] Surenjav E, Herminghaus S, Priest C , et al. Discrete microfluidics-reorganizing droplet arrays at a bend. Applied Physics Letters, 2009,95:154104
    [28] Surenjav E, Priest C, Herminghaus S , et al. Manipulation of gel emulsions by variable microchannel geometry. Lab on a Chip, 2009,9(2):325-330
    [29] Raven JP, Marmottant P . Periodic microfluidic bubbling oscillator: insight into the stability of two-phase microflows. Physical Review Letters, 2006,97(15):154501
    [30] Parthiban P, Doyle PS, Hashimoto M . Self-assembly of droplets in three-dimensional microchannels. Soft Matter, 2019,15(21):4244-4254
    [31] 赵绍磊, 王灵宇, 吴送姑 . 药物多晶型的研究进展. 化学工业与工程, 2018,35(3):12-21
    [31] ( Zhao Shaolei, Wang Lingyu, Wu Songgu . Progress in the research of pharmaceutical polymorph. Chemcial Industry and Engineering, 2018,35(3):12-21 (in Chinese))
    [32] Vuong SM, Anna SL . Tuning bubbly structures in microchannels. Biomicrofluidics, 2012,6:022004
    [33] Garstecki P, Whitesides GM . Flowing crystals: Nonequilibrium structure of foam. Physical Review Letters, 2006,97(2):024503
    [34] Beatus T, Tlusty T, Bar-Ziv R . Phonons in a one-dimensional microfluidic crystal. Nature Physics, 2006,2(11):743-748
    [35] Thorsen T, Roberts RW, Arnold FH , et al. Dynamic pattern formation in a vesicle-generating microfluidic device. Physical Review Letters, 2001,86(18):4163-4166
    [36] Raven JP, Marmottant P . Microfluidic crystals: dynamic interplay between rearrangement waves and flow. Physical Review Letters, 2009,102(8):084501
    [37] Conchouso D, Castro D, Khan SA , et al. Three-dimensional parallelization of microfluidic droplet generators for a litre per hour volume production of single emulsions. Lab on a Chip, 2014,14(16):3011-3020
    [38] 马余强 . 软物质的自组织. 物理学进展, 2002,22(1):73-98
    [38] ( Ma Yuqiang . Self organization in softmatter. Progress In Physics, 2002,22(1):73-98 (in Chinese))
    [39] 苏扬, 余晓畅, 孙梓翔 . 胶体晶体自组装常用方法的研究进展. 人工晶体学报, 2019,48(9):1742-1753
    [39] ( Su Yang, Yu Xiaochang, Sun Zixiang . Research progress of common self-assembly methods for colloidal crystals. Journal of Synthetic Crystals, 2019,48(9):1742-1753 (in Chinese))
    [40] H?hler R, Cohen-Addad S . Rheology of liquid foam. Journal of Physics: Condensed Matter, 2005,17(41):R1041-R1069
    [41] Zheng C, Zhao BH, Wang K , et al. Bubble generation rules in microfluidic devices with microsieve array as dispersion medium. AIChE Journal, 2015,61(5):1663-1676
计量
  • 文章访问数:  1597
  • HTML全文浏览量:  353
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-09-05
  • 刊出日期:  2020-04-09

目录

    /

    返回文章
    返回