EI、Scopus 收录
中文核心期刊

船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法

刘璐, 尹振宇, 季顺迎

刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739. DOI: 10.6052/0459-1879-19-250
引用本文: 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739. DOI: 10.6052/0459-1879-19-250
Liu Lu, Yin Zhenyu, Ji Shunying. HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739. DOI: 10.6052/0459-1879-19-250
Citation: Liu Lu, Yin Zhenyu, Ji Shunying. HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739. DOI: 10.6052/0459-1879-19-250
刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739. CSTR: 32045.14.0459-1879-19-250
引用本文: 刘璐, 尹振宇, 季顺迎. 船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法[J]. 力学学报, 2019, 51(6): 1720-1739. CSTR: 32045.14.0459-1879-19-250
Liu Lu, Yin Zhenyu, Ji Shunying. HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739. CSTR: 32045.14.0459-1879-19-250
Citation: Liu Lu, Yin Zhenyu, Ji Shunying. HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(6): 1720-1739. CSTR: 32045.14.0459-1879-19-250

船舶与海洋平台结构冰载荷的高性能扩展多面体离散元方法

基金项目: 1) 国家重点研发计划重点专项(2017YFE0111400);国家重点研发计划重点专项(2016YFC1401505);国家自然科学基金项目资助(51639004);国家自然科学基金项目资助(41576179)
详细信息
    通讯作者:

    季顺迎

  • 中图分类号: O343.3,U66

HIGH-PERFORMANCE DILATED POLYHEDRAL BASED DEM FOR ICE LOADS ON SHIP AND OFFSHORE PLATFORM STRUCTURES

  • 摘要: 船舶与海洋平台结构的冰载荷是寒区海洋工程结构物设计中的关键参数,而离散元方法是有效计算结构冰载荷的重要手段. 本文采用基于闵可夫斯基和原理的扩展多面体离散元方法模拟船舶与海洋平台结构的相互作用过程. 其中,构造扩展多面体的近似包络函数并建立了基于优化模型的快速接触搜索算法;考虑单元间粘结作用的刚度软化过程建标识码元间的粘结-破碎模型. 同时,发展了 CPU-GPU 协同异构环境下的高性能并行算法. 为分析海冰与海洋结构作用中的冰载荷,采用ISO标准验证了扩展多面体离散元分析结构冰载荷的准确性. 采用离散元方法计算了船舶结构的冰载荷,研究了船舶结构表明的线载荷分布特点,并采用船舶结构冰阻力经验公式验证了计算结果的合理性. 采用离散元方法计算了平整冰区与多桩腿平台结构的相互作用,分析各桩腿上的冰载荷特点. 针对碎冰区的海冰管理过程,采用离散元方法分析了船舶结构绕行过程中的船舶和海洋平台结构冰载荷. 本文方法可有效应用于海洋结构冰载荷分析,能为极地船舶与海洋平台结构的设计和安全运行提供科学的分析手段.
    Abstract: The ice loads on ship and offshore platform structures is the key factor in structure design for cold regions. The discrete element method (DEM) is an important approach to determine the ice load on structures. According to the Minkowski sum theory, the dilated polyhedra based DEM is employed to simulate the interaction between sea ice and ship and offshore platform structures in this paper. In the dilated polyhedra based DEM, the enveloped function of the dilated polyhedron is generated to establish the fast contact detection algorithm based on the optimization model. Meanwhile, the bond-break model between elements is established by considering the stiffness softening process between bonded elements. Accordingly, the high-performance algorithm based on CPU-GPU cooperative-heterogeneous environment is developed. The ISO standard is employed to validate the ice load determined by the dilated polyhedra based DEM for better engineering applications of the interaction between sea ice and marine structures. The ice load on ship hull is calculated by the proposed method while the line load distribution on ship hull is studied. The ice resistance of ship hull is compared with the result by Lindqvist empirical formula to validate the accuracy of DEM simulations. The interaction between level ice and multi-leg platform is simulated while the ice load on each leg is analyzed. For the ice management in broken ice regions, the ice load on ship and offshore structures is simulated when the ship navigates around the offshore platform in circle. The proposed method can be effectively applied in the analysis of ice load on marine structures, and can provide a scientific approach for the design and safety operation of ship and offshore structures.
  • 1 Ritch R, Frederking R, Johnston M , et al. Local ice pressures measured on a strain gauge panel during the CCGS Terry Fox bergy bit impact study. Cold Regions Science & Technology, 2008,52(1):29-49
    2 岳前进, 刘圆, 屈衍 等. 抗冰平台的冰振疲劳分析. 工程力学, 2007,24(5):159-164
    2 ( Yue Qianjing, Liu Yuan, Qu Yan , et al. Fatigue-life analysis of ice-resistant platforms. Engineering Mechanics, 2007,24(5):159-164 (in Chinese))
    3 Dempsey JP . Research trends in ice mechanics. International Journal of Solids and Structures, 2000,37:131-153
    4 Tan X, Riska K, Moan T . Effect of dynamic bending of level ice on ship’s continuous-mode icebreaking. Cold Regions Science and Technology, 2014,107:82-95
    5 Kujala P, Arughadhoss S . Statistical analysis of ice crushing pressures on a ship’s hull during hull-ice interaction. Cold Regions Science and Technology, 2012,70:1-11
    6 Li C, Jordaan IJ, Taylor RS . Estimation of local ice pressure using up-crossing rate. Journal of Offshore Mechanics & Arctic Engineering, 2010,132(3):71-78
    7 Sodhi DS . Vertical penetration of floating ice sheets. International Journal of Solids and Structures, 1998,35(31-32):4275-4297
    8 Frederking RMW, Timco GW . Quantitative analysis of ice sheet failure against an inclined plane. Journal of Energy Resource Technology, 1985,107:381-387
    9 Huang Y, Ma J, Tian Y . Model tests of four-legged jacket platforms in ice: Part 1. Model tests and results. Cold Regions Science and Technology, 2013,95:74-85
    10 Huang Y . Model test study of the nonsimultaneous failure of ice before wide conical structures. Cold Regions Science and Technology, 2010,63(3):87-96
    11 Shen HH, Hibler WD, Lepp$\ddot{a}$ranta M . On applying granular flow theory to a deforming broken ice field. Acta Mechanica, 1986,63(1-4):143-160
    12 龙雪, 宋础, 季顺迎 等. 锥角对锥体结构抗冰性能影响的离散元分析. 海洋工程, 2018,36(5):92-100
    12 ( Long Xue, Song Chu, Ji Shunying , et al. Influence of cone angle on anti-icing performance of conical structure with numerical simulations of discrete element method. The Ocean Engineering, 2018,36(5):92-100 (in Chinese))
    13 Sun S, Shen HH . Simulation of pancake ice load on a circular cylinder in a wave and current field. Cold Regions Science & Technology, 2012,78(3):31-39
    14 Lau M, Lawrence K, Rothenburg L . Discrete element analysis of ice loads on ships and structures. Ships and Offshore Structures, 2011,6(3):211-221
    15 王永学, 李春花, 孙鹤泉 等. 斜坡式防波堤前海冰堆积数值模拟. 水利学报, 2003,6:105-110
    15 ( Wang Yongxue, Li Chunhua, Sun Hequan , et al. Numerical simulation of sea ice pile-up on inclined breakwater. Shuili Xuebao, 2003,6:105-110 (in Chinese))
    16 刘璐, 龙雪, 季顺迎 . 基于扩展多面体的离散单元法及其作用于圆桩的冰载荷计算. 力学学报, 2015,47(5):1046-1057
    16 ( Liu Lu, Long Xue, Ji Shunying . Dilated polyhedra based discrete element method and its application of ice load on cylindrical pile. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(5):1046-1057 (in Chinese))
    17 狄少丞, 季顺迎 . 海冰与自升式海洋平台相互作用GPU离散元模拟. 力学学报, 2014,46(3):562-571
    17 ( Di Shaocheng, Ji Shunying . GPU-based discrete element modelling of interaction between sea ice and jack-up platform structure. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3):562-571 (in Chinese))
    18 Long X, Ji S, Wang Y . Validation of microparameters in discrete element modeling of sea ice failure process. Particulate Science and Technology, 2018,37(4):546-555
    19 龙雪, 刘社文, 季顺迎 . 水位变化对正倒锥体冰载荷影响的离散元分析. 力学学报, 2019,51(1):74-84
    19 ( Long Xue, Liu Shewen, Ji Shunying . Influence of water level on ice load on upward-downward conical structure based on DEM analysis. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):74-84 (in Chinese))
    20 Wilchinsky AV, Feltham DL, Hopkins MA . Modelling the reorientation of sea-ice faults as the wind changes direction. Annals of Glaciology, 2011,52(57):83-90
    21 Hopkins MA, Thorndike AS . Floe formation in Arctic sea ice. Journal of Geophysical Research Oceans, 2006,111(C11S23):1-9
    22 Liu L, Ji S . Ice load on floating structure simulated with dilated polyhedral discrete element method in broken ice field. Applied Ocean Research, 2018,75:53-65
    23 Ranta J, Poloj$\ddot{a}$rvi A, Tuhkuri J . Limit mechanisms for ice loads on inclined structures: Buckling. Cold Regions Science & Technology, 2018,147:34-44
    24 Gong H, Poloj$\ddot{a}$rvi A, Tuhkuri J . Discrete element simulation of the resistance of a ship in unconsolidated ridges. Cold Regions Science & Technology, 2019,167:102855
    25 Smeets B, Odenthal T, Vanmaercke S , et al. Polygon-based contact description for modeling arbitrary polyhedra in the discrete element method. Computer Methods in Applied Mechanics and Engineering, 2015,290:277-289
    26 周海娟, 马刚, 袁葳 等. 堆石颗粒压缩破碎强度的尺寸效应. 岩土力学, 2017,38(7):2425-2433
    26 ( Zhou Haijuan, Ma Gang, Yuan Wei , et al. Size effect on the crushing strengths of rock particles. Rock and Soil Mechanics, 2014,46(3):562-571 (in Chinese))
    27 Wang J, Li S, Feng C , A shrunken edge algorithm for contact detection between convex polyhedral blocks. Computers and Geotechnics, 2015,63:315-330
    28 熊迅, 李天密, 马棋棋 等. 石英玻璃圆环高速膨胀碎裂过程的离散元模拟. 力学学报, 2018,50(3):622-632
    28 ( XiongXun, Li Tianmi, Ma Qiqi, et al. Discrete element simulations of the high velocity expensionand fragmentation of qartz glass rings. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):622-632 (in Chinese))
    29 Liu L, Ji S . Bond and fracture model in dilated polyhedral DEM and its application to simulate breakage of brittle materials. Granular Matter, 2019,21:41
    30 Galindo-Torres SA, Mu$\widetilde{n}$oz JD, Alonso-Marroquín F . Minkowski-Voronoi diagrams as a method to generate random packings of spheropolygons for the simulation of soils. Physical Review E, 2010,82:056713
    31 Galindo-Torres SA, Pedroso DM, Williams DJ , et al. Breaking processes in three-dimensional bonded granular materials with general shapes. Computer Physics Communications, 2012,183(2):266-277
    32 Behraftar S, Galindo Torres SA, Scheuermann A , et al. A calibration methodology to obtain material parameters for the representation of fracture mechanics based on discrete element simulations. Computers and Geotechnics, 2017,81:274-283
    33 Galindo-Torres SA . A coupled discrete element Lattice Boltzmann method for the simulation of fluid-solid interaction with particles of general shapes. Computer Methods in Applied Mechanics & Engineering, 2013,265(2):107-119
    34 谭援强, 肖湘武, 张江涛 等. 尼龙粉末在SLS 预热温度下的离散元模型参数确定及其流动特性分析. 力学学报, 2019,51(1):56-63
    34 ( Tan Yuanqiang, Xiao Xiangwu, Zhang Jiangtao , et al. Determination of discrete element model contact parameters of nylon powder at SLS preheating temperature and its flow characteristics. Chinese Jounal of Theoretical and Applied Mechanics, 2019,51(1):56-63 (in Chinese))
    35 Harkness J . Potential particles for the modelling of interlocking media in three dimensions. International Journal for Numerical Methods in Engineering, 2010,80(11):1573-1594
    36 Houlsby GT . Potential particles: A method for modelling non-circular particles in DEM. Computers & Geotechnics, 2009,36(5):953-959
    37 Boon CW, Houlsby GT, Utili S . A new algorithm for contact detection between convex polygonal and polyhedral particles in the discrete element method. Computers & Geotechnics, 2012,44(1):73-82
    38 Boon CW, Houlsby GT, Utili S . A new contact detection algorithm for three-dimensional non-spherical particles. Powder Technology, 2013,248(2):94-102
    39 Gherardi M, Lagomarsino MC . Characterizing the size and shape of sea ice floes. Scientific Reports, 2015,5:583-593
    40 Sotomayor OE, Tippur HV . Role of cell regularity and relative density on elasto-plastic compression response of random honeycombs generated using Voronoi diagrams. International Journal of Solids & Structures, 2014,51(21-22):3776-3786
    41 刘璐, 季顺迎 . 基于扩展多面体包络函数的快速接触搜索算法. 中国科学:物理学力学天文学, 2019,49:064601
    41 ( Liu Lu, Ji Shunying . A fast detection algorithm based on the envelope function of dilated polyhedron. Sci Sin-Phys Mech Astron, 2019,49:064601 (in Chinese))
    42 Podlozhnyuk A, Pirker S, Kloss C . Efficient implementation of superquadric particles in discrete element method within an open-source framework. Computational Particle Mechanics, 2017,4(1):101-118
    43 Dong K, Wang C, Yu A . A novel method based on orientation discretization for discrete element modeling of non-spherical particles. Chemical Engineering Science, 2015,126:500-516
    44 Liu SD, Zhou ZY, Zou RP , et al. Flow characteristics and discharge rate of ellipsoidal particles in a flat bottom hopper. Powder Technology, 2014,253(253):70-79
    45 Zhou Y . A theoretical model of collision between soft-spheres with Hertz elastic loading and nonlinear plastic unloading. Theoretical and Applied Mechanics Letters, 2011,1:041006
    46 Ramirez R, Poschel T, Brilliantov NV , et al. Coefficient of restitution of colliding viscoelastic spheres. Physical Review E, 1999,60(3):4465-4472
    47 Ji S, Shen HH . Internal parameters and regime map for soft polydispersed granular materials. Journal of Rheology, 2008,52(1):87-103
    48 Zhang JH, He JD, Fan JW . Static and dynamic stability assessment of slopes or dam foundations using a rigid body-spring element method. International Journal of Rock Mechanics & Mining Sciences, 2001,38(7):1081-1090
    49 Azevedo NM, Candeias M, Gouveia F . A rigid particle model for rock fracture following the voronoi tessellation of the grain structure: formulation and validation. Rock Mechanics and Rock Engineering, 2015,48(2):535-557
    50 Potyondy DO, Cundall PA . A bonded-particle model for rock. International Journal of Rock Mechanics & Mining Sciences, 2004,41(7):1329-1364
    51 Ma G, Zhou W, Chang XL . Modeling the particle breakage of rockfill materials with the cohesive crack model. Computers & Geotechnics, 2014,61(61):132-143
    52 Ma G, Zhou W, Chang XL , et al. A hybrid approach for modeling of breakable granular materials using combined finite-discrete element method. Granular Matter, 2016,18:7
    53 Guo L, Latham JP, Xiang J . Numerical simulation of breakages of concrete armour units using a three-dimensional fracture model in the context of the combined finite-discrete element method. Computers & Structures, 2015,146:117-142
    54 Park K, Paulino GH, Roesler JR . A unified potential-based cohesive model of mixed-mode fracture. Journal of the Mechanics and Physics of Solids, 2009,57(5):891-908
    55 Benzeggagh ML, Kenane M . Measurement of mixed-mode delamination fracture toughness of unidirectional glass/epoxy composites with mixed-mode bending apparatus. Composites Science and Technology, 1996,56(3):439-449
    56 Camanho PP, Davila CG, Moura MFD . Numerical simulation of mixed-mode progressive delamination in composite materials. Journal of Composite Materials, 2003,37(15):1415-1438
    57 Govender N, Wilke DN, Kok S . Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method. Applied Mathematics and Computation, 2014,267:810-829
    58 Nishiura D, Sakaguchi H . Parallel-vector algorithms for particle simulations on shared-memory multiprocessors. Journal of Computational Physics, 2011,230(4):1923-1938
    59 Chow AD, Rogers BD, Lind SJ , et al. Incompressible SPH (ISPH) with fast Poisson solver on a GPU. Computer Physics Communications, 2018,226:81-103
    60 Torquato S, Jiao Y . Dense packings of the Platonic and Archimedean solids. Nature, 2009,463:876-879
    61 Hopkins MA . On the ridging of intact lead ice. Journal of Geophysical Research Oceans, 1994,99(C8):16351-16360
    62 International Organization for Standardization. ISO 19906: 2010, Petroleum and natural gas industries-Arctic offshore structures. Europe: ISO, 2010
    63 Frederking RMW, Timco GW . Quantitative analysis of ice sheet failure against an inclined plane. Journal of Energy Resource Technology, 1985,107:381-387
    64 Zhou Q, Peng H, Qiu W . Numerical investigations of ship-ice interaction and maneuvering performance in level ice. Cold Regions Science and Technology, 2016,122:36-49
    65 Li Z, Chuang Z, Ji C . Ice forces acting on towed ship in level ice with straight drift. Part II: Numerical simulation. International Journal of Naval Architecture & Ocean Engineering, 2018,10:119-128
    66 Lindqvist G . A straightforward method for calculation of ice resistance of ships //Proceedings of POAC, 1989, 722-735
    67 Lu W, Lubbad R, L${\phi}$set S . Parallel channels’ fracturing mechanism during ice management operations. Part II: Experiment. Cold Regions Science & Technology, 2018,156:117-133
    68 Lu W, Lubbad R, Aleksey S , et al. Parallel channels’ fracturing mechanism during ice management operations. Part I: Theory. Cold Regions Science & Technology, 2018,156:102-116
计量
  • 文章访问数:  2365
  • HTML全文浏览量:  671
  • PDF下载量:  148
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-08-30
  • 刊出日期:  2019-11-17

目录

    /

    返回文章
    返回