EI、Scopus 收录
中文核心期刊

接地式三要素型动力吸振器性能分析

邢子康, 申永军, 李向红

邢子康, 申永军, 李向红. 接地式三要素型动力吸振器性能分析[J]. 力学学报, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
引用本文: 邢子康, 申永军, 李向红. 接地式三要素型动力吸振器性能分析[J]. 力学学报, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
Citation: Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. DOI: 10.6052/0459-1879-19-154
邢子康, 申永军, 李向红. 接地式三要素型动力吸振器性能分析[J]. 力学学报, 2019, 51(5): 1466-1475. CSTR: 32045.14.0459-1879-19-154
引用本文: 邢子康, 申永军, 李向红. 接地式三要素型动力吸振器性能分析[J]. 力学学报, 2019, 51(5): 1466-1475. CSTR: 32045.14.0459-1879-19-154
Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. CSTR: 32045.14.0459-1879-19-154
Citation: Xing Zikang, Shen Yongjun, Li Xianghong. PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1466-1475. CSTR: 32045.14.0459-1879-19-154

接地式三要素型动力吸振器性能分析

基金项目: 1)国家自然科学基金项目(11772206);河北省高等学校创新团队领军人才计划(LJRC018);河北省高等学校高层次人才科学研究项目资助(GCC2014053)
详细信息
    通讯作者:

    申永军

  • 中图分类号: O328,TH113.1

PERFORMANCE ANALYSIS OF GROUNDED THREE-ELEMENT DYNAMIC VIBRATION ABSORBER

  • 摘要: 利用固定点理论优化接地类型的动力吸振器得到的结果可能不是全局最优参数,在选择其他参数时主系统可以获得更小的振幅, 接地类型动力吸振器的优化问题值得进一步研究. 因此,以一种接地式三要素型动力吸振器为对象,通过研究系统参数变化对固 定点位置与主系统最大振幅的影响,得到了此吸振器的局部最优参数并分析了它的性能. 首先建立了此系统模型的运动微分方程, 得到了主系统振幅放大因子,发现系统存在3个与阻尼无关的固定点. 固定点中幅值较大点随系统参数变化的趋势可以代表最大振 幅随系统参数变化的趋势,因此利用盛金公式得到了固定点幅值的表达式. 为了更加精确,进一步使用数值算法得到了最大振幅与 系统参数的关系图,发现系统中存在局部最优参数. 通过对比接地式吸振器与接地三要素型吸振器的最大振幅随系统参数变化的趋 势,得到了接地式三要素型吸振器的局部最优参数,并发现当固有频率比小于局部最优频率比时,接地式三要素型吸振器模型主系 统的最大振幅要远小于接地式动力吸振器模型.
    Abstract: In grounded dynamic vibration absorbers (DVA), the changing tendencies of the fixed-point amplitude with the natural frequency ratio are not monotonous. Thus, the results obtained by optimizing this type DVA based on classical fixed-point theory may be the local optimum parameters. The primary system can obtain smaller amplitudes when selecting other parameters. The optimization of grounded type DVAs are worthy to further study. In addition, the damper of the DVA inevitably has some elasticity. Accordingly, a grounded three-element DVA is studied by analyzing the influence of system parameters on fixed-point positions and maximum amplitude in this paper. The local optimum parameters of the DVA are obtained and the performance is investigated. Firstly, the motion differential equation of the system is established, and the amplitude amplification factor of the primary system is obtained. It is found that there are three fixed-points independent of damping on the amplitude-frequency response curve. In most cases, by optimizing the damping ratio, the tendency of the larger of the fixed point changing with the system parameters can represent the tendency of the maximum amplitude changing with the system parameters. Therefore, the expressions of the fixed-point are obtained by using the Shengjin's formula. For more accuracy, the numerical algorithm is used to obtain the relationship between the maximum amplitude and the system parameters, and it is found that there are local optimum parameters in the system. Finally, in order to obtain the local optimum parameters the grounded three-element DVA is compared with the grounded DVA. The study shows that the local optimum parameters of the two DVAs are the same except the stiffness ratio. When the natural frequency is smaller than local optimum frequency ratio, the maximum amplitude of the primary system of the grounded three-element DVA model is much smaller than that of the grounded DVA.
  • [1] Frahm H. Device for damping vibrations of bodies: U.S. Patent 989958. 1911 -04-18
    [2] Ormondroyd J, Den Hartog JP . The theory of the dynamic vibration absorber. Trans ASME, J Appl Mech, 1928,50:9-22
    [3] Hahnkamm E . The damping of the foundation vibrations at varying excitation frequency. Master of Architecture, 1932,4:192-201
    [4] Brock JE. A note on the damped vibration absorber. Trans ASME, J Appl Mech , 1946, 13(4): A-284
    [5] Den Hartog JP . Mechanical vibrations. Courier Corporation, 1985
    [6] Crandall SH, Mark WD. Random vibration in mechanical systems. Academic Press, 1963: 71-72
    [7] Yamaguchi H . Damping of transient vibration by a dynamic absorber. Trans Jpn Soc Mech Eng, 1988,54(499):561
    [8] Ren MZ . A variant design of the dynamic vibration absorber. Journal of Sound Vibration, 2001,245:762-770
    [9] Liu K, Liu J . The damped dynamic vibration absorbers: revisited and new result. Journal of Sound and Vibration, 2005,284(3-5):1181-1189
    [10] Cheung YL, Wong WO . H-infinity optimization of a variant design of the dynamic vibration absorber---Revisited and new results. Journal of Sound and Vibration, 2011,330(16):3901-3912
    [11] Asami T, Nishihara O . Analytical and experimental evaluation of an air damped dynamic vibration absorber: design optimizations of the three-element type model. Journal of Vibration and Acoustics, 1999,121(3):334-342
    [12] Asami T, Nishihara O . H$_{2}$optimization of the three-element type dynamic vibration absorbers. Journal of Vibration and Acoustics, 2002,124(4):583-592
    [13] 王孝然, 申永军, 杨绍普 . 接地式三要素型动力吸振器的H$_{\infty }$优化. 动力学与控制学报, 2016,14(5):448-453
    [13] ( Wang Xiaoran, Shen Yongjun, Yang Shaopu . H$_{\infty }$optimization of the grounded three element type dynamic vibration absorber. Journal of Dynamics and Control, 2016,14(5):448-453 (in Chinese))
    [14] Shen YJ, Wang L, Yang SP , et al. Nonlinear dynamical analysis and parameters optimization of four semi-active on-off dynamic vibration absorbers. Journal of Vibration and Control, 2013,19(1):143-160
    [15] Shen Y, Ahmadian M . Nonlinear dynamical analysis on four semi-active dynamic vibration absorbers with time delay. Shock and Vibration, 2013,20(4):649-663
    [16] 彭海波, 申永军, 杨绍普 . 一种含负刚度元件的新型动力吸振器的参数优化. 力学学报, 2015,47(2):320-327
    [16] ( Peng Haibo, Shen Yongjun, Yang Shaopu . Parameter optimization of a new type of dynamic vibration absorber with negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2015,47(2):320-327 (in Chinese))
    [17] 邢昭阳, 申永军, 邢海军 等. 一种含放大机构的负刚度动力吸振器的参数优化. 力学学报, 2019,51(3):894-903
    [17] ( Xing Zhaoyang, Shen Yongjun, Xing Haijun , et al. Parameters optimization of a dynamic absorber with amplifying mechanism and negative stiffness. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(3):894-903 (in Chinese))
    [18] 王孝然, 申永军, 杨绍普 等. 含负刚度元件的三要素型动力吸振器的参数优化. 振动工程学报, 2017,30(2):177-184
    [18] ( Wang Xiaoran, Shen Yongjun, Yang Shaopu , et al. Parameter optimization of three-element type of dynamic vibration absorber with negative stiffness. Journal of Vibration Engineering, 2017,30(2):177-184 (in Chinese))
    [19] Shen Y, Peng H, Li X , et al. Analytically optimal parameters of dynamic vibration absorber with negative stiffness. Mechanical Systems and Signal Processing, 2017,85:193-203
    [20] Hu Y, Chen MZQ . Performance evaluation for inerter-based dynamic vibration absorbers. International Journal of Mechanical Sciences, 2015,99:297-307
    [21] Hu Y, Chen MZQ, Zhan S , et al. Analysis and optimisation for inerter-based isolators via fixed-point theory and algebraic solution. Journal of Sound and Vibration, 2015,346(1):17-36
    [22] Wang X, Liu X, Shan Y , et al. Analysis and optimization of the novel inerter-based dynamic vibration absorbers. IEEE Access, 2018,6:33169-33182
    [23] 陆泽琦, 陈立群 . 非线性被动隔振的若干进展. 力学学报, 2017,49(3):550-564
    [23] ( Lu Zeqi, Chen Liqun . Some recent progresses in nonlinear passive isolations of vibrations. Chinese Journal of Theoretical and Applied Mechani, 2017,49(3):550-564 (in Chinese))
    [24] 张舒, 徐鉴 . 时滞耦合系统非线性动力学的研究进展. 力学学报, 2017,49(3):565-587
    [24] ( Zhang Shu, Xu Jian . Review on nonlinear dynamics in systems with coupling delays. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):565-587 (in Chinese))
    [25] 赵艳影, 徐鉴 . 时滞非线性动力吸振器的减振机理. 力学学报, 2008,40(1):98-106
    [25] ( Yanying Zhao Jian Xu . Mechanism analysis of delayed nonlinear vibration absorber. Chinese Journal of Theoretical and Applied Mechanics, 2008,40(1):98-106 (in Chinese))
    [26] Zhao YY, Xu J . Effects of delayed feedback control on nonlinear vibration absorber system. Journal of Sound and Vibration, 2007,308(1-2):212-230
    [27] 赵艳影, 徐鉴 . 利用时滞反馈控制自参数振动系统的振动. 力学学报, 2011,43(5):894-904
    [27] ( Zhao Yanying, Xu Jian . Using the delayed feedback to control the vibration of the auto-parametric dynamical system. Chinese Journal of Theoretical and Applied Mechanics, 2011,43(5):894-904 (in Chinese))
    [28] 李帅, 周继磊, 任传波 等. 时变参数时滞减振控制研究. 力学学报, 2018,50(1):99-108
    [28] ( Li Shuai, Zhou Jilei, Ren Chuanbo , et al. The research of time delay vibration control with time-varying parameters. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):99-108 (in Chinese))
    [29] 申永军, 赵永香, 田佳雨 等. 一类含时滞的半主动悬架系统的动力学分析. 力学学报, 2013,45(5):755-762
    [29] ( Shen Yongjun, Zhao Yongxiang, Tian Jiayu , et al. Dynamical analysis on a kind of semi-active suspension with time delay. Chinese Journal of Theoretical and Applied Mechanics, 2013,45(5):755-762 (in Chinese))
    [30] 刘俊, 陈林聪, 孙建桥 . 随机激励下滞迟系统的稳态响应闭合解. 力学学报, 2017,49(3):685-692
    [30] ( Liu Jun, Chen Lincong, Sun Jianqiao . The closed-form solution of steady state response of hysteretic system under stochastic excitation. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):685-692 (in Chinese))
    [31] 公徐路, 许鹏飞 . 含时滞反馈与涨落质量的记忆阻尼系统的随机共振. 力学学报, 2018,50(4):880-889
    [31] ( Gong Xulu, Xu Pengfei . Stochastic resonance of a memorial-damped system with time delay feedback and fluctuating mass. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(4):880-889 (in Chinese))
    [32] 吕小红, 罗冠炜 . 冲击渐进振动系统相邻基本振动的转迁规律. 力学学报, 2017,49(5):1091-1102
    [32] ( Lü Xiaohong, Luo Guanwei . Transition law of adjacent fundamental motions in vibro-impact system with progression. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):1091-1102 (in Chinese))
    [33] Zang J, Yuan TC, Lu ZQ , et al. A lever-type nonlinear energy sink. Journal of Sound and Vibration, 2018,437:119-134
    [34] Zhang YW, Lu YN, Zhang W , et al. Nonlinear energy sink with inerter. Mechanical Systems and Signal Processing, 2019,125:52-64
    [35] 范盛金 . 一元三次方程的新求根公式与新判别法. 海南师范学院学报(自然科学版), 1989,2(2):91-98
    [35] ( Fan Shengjin . A new extracting formula and a new distinguishing means on the one variable cubic equation. Natural Science Journal of Hainan Normal College, 1989,2(2):91-98 (in Chinese))
计量
  • 文章访问数:  1437
  • HTML全文浏览量:  187
  • PDF下载量:  101
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-06-16
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回