EI、Scopus 收录
中文核心期刊

非平衡等离子体对甲烷--氧扩散火焰影响的实验研究

周思引, 聂万胜, 车学科, 仝毅恒, 郑体凯

周思引, 聂万胜, 车学科, 仝毅恒, 郑体凯. 非平衡等离子体对甲烷--氧扩散火焰影响的实验研究[J]. 力学学报, 2019, 51(5): 1336-1349. DOI: 10.6052/0459-1879-19-149
引用本文: 周思引, 聂万胜, 车学科, 仝毅恒, 郑体凯. 非平衡等离子体对甲烷--氧扩散火焰影响的实验研究[J]. 力学学报, 2019, 51(5): 1336-1349. DOI: 10.6052/0459-1879-19-149
Zhou Siyin, Nie Wansheng, Che Xueke, Tong Yiheng, Zheng Tikai. EXPERIMENT STUDY OF EFFECT OF NONEQUILIBRIUM PLASMA ON METHANE-OXYGEN DIFFUSIVE FLAME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349. DOI: 10.6052/0459-1879-19-149
Citation: Zhou Siyin, Nie Wansheng, Che Xueke, Tong Yiheng, Zheng Tikai. EXPERIMENT STUDY OF EFFECT OF NONEQUILIBRIUM PLASMA ON METHANE-OXYGEN DIFFUSIVE FLAME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349. DOI: 10.6052/0459-1879-19-149
周思引, 聂万胜, 车学科, 仝毅恒, 郑体凯. 非平衡等离子体对甲烷--氧扩散火焰影响的实验研究[J]. 力学学报, 2019, 51(5): 1336-1349. CSTR: 32045.14.0459-1879-19-149
引用本文: 周思引, 聂万胜, 车学科, 仝毅恒, 郑体凯. 非平衡等离子体对甲烷--氧扩散火焰影响的实验研究[J]. 力学学报, 2019, 51(5): 1336-1349. CSTR: 32045.14.0459-1879-19-149
Zhou Siyin, Nie Wansheng, Che Xueke, Tong Yiheng, Zheng Tikai. EXPERIMENT STUDY OF EFFECT OF NONEQUILIBRIUM PLASMA ON METHANE-OXYGEN DIFFUSIVE FLAME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349. CSTR: 32045.14.0459-1879-19-149
Citation: Zhou Siyin, Nie Wansheng, Che Xueke, Tong Yiheng, Zheng Tikai. EXPERIMENT STUDY OF EFFECT OF NONEQUILIBRIUM PLASMA ON METHANE-OXYGEN DIFFUSIVE FLAME[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1336-1349. CSTR: 32045.14.0459-1879-19-149

非平衡等离子体对甲烷--氧扩散火焰影响的实验研究

基金项目: 1) 国家自然科学基金资助项目(91441123);国家自然科学基金资助项目(51777214);国家自然科学基金资助项目(51876219)
详细信息
    通讯作者:

    周思引

  • 中图分类号: TF055,O539

EXPERIMENT STUDY OF EFFECT OF NONEQUILIBRIUM PLASMA ON METHANE-OXYGEN DIFFUSIVE FLAME

  • 摘要: 利用自主设计的等离子喷注器采用介质阻挡放电方式产生非平衡等离子体,首先利用纹影技术、热电偶、单点红外测温等多种诊断方法实验研究了纯氧放电等离子体的电学特性、热效应及气动效应,然后通过可见光和化学自发辐射成像技术获得了火焰形态及特征参数,详细分析了等离子体对甲烷--纯氧扩散火焰形态和释热的影响,并计算了放电功率及费效比. 结果表明, 燃烧导致放电电流显著增大,其中电压幅值与氧气流速对放电电流大小的影响规律正好相反;与空气等离子体相比, 相同流量与电压条件下氧等离子体放电功率较高,但其发光强度明显较弱; 氧等离子体热效应微弱, 对燃烧的影响可以忽略,放电反应中释热过程主要由含氧组分决定;放电产生了具有3个速度分量的诱导射流, 增大了氧射流角,且电压越大越显著.等离子体主要通过气动效应改变了燃料与氧化剂的掺混,使得一定条件下火焰变得更稳定、释热更强.在所研究的范围内等离子体作用的费效比最低仅为2.2%,大流量、小混合比更有利.
    Abstract: Based on the self-designed plasma injector, a nonequilibrium oxygen plasma is generated by dielectric barrier discharge to study the effect of pure oxygen plasma on methane-oxygen diffusive flame. The discharge characteristics, thermal and gas dynamic effects of the plasma, together with the flame characteristic parameters, the discharge power, and the cost-benefit ratio are all experimentally analyzed by utilizing various diagnostic methods, such as schlieren imaging, thermocouple, infrared thermometer, broadband and CH* chemiluminescence imaging. Results show that the discharge current increases notably due to combustion. The current increases with the discharge voltage rises, yet it decreases with the flow rate of oxygen increases. The discharge power of oxygen plasma is higher than that of air plasma, yet the light emission intensity is obviously weaker under a certain flow rate and voltage. The heating of discharge plasma is mainly restricted within the injector. Since the maximum temperature increment led by the plasma is only 30.6 K, it is assumed that the thermal effect of oxygen plasma is too weak to influence the flame combustion. Moreover, according to the experimental results of air discharge plasma, the heat release process of the discharge reactions should mainly be determined by species, which contain oxygen. An induced jet, which has three velocity components, is generated by the discharge. The angle of the original oxygen jet is enlarged due to this induced jet, especially for a higher voltage. The relative capability of the plasma on enlarging the jet angle is stronger under a lower flow rate. The flame becomes more stable and its heat release enhances under certain conditions mainly due to the plasma gas dynamic effect, which changes the mixing between fuel and oxidizer. The lowest cost-benefit ratio of the plasma is only 2.2% in this study, and the plasma performs better under a high flow rate or a small mixing ratio.
  • [1] 李亚裕 . 液体推进剂. 北京: 中国宇航出版社, 2011: 216-217
    [1] ( Li Yayu. Liquid Propellant. Beijing: Chinese Aerospace Press, 2011: 216-217(in Chinese))
    [2] 尹亮, 刘伟强 . 液氧/甲烷发动机研究进展与技术展望. 航空兵器, 2018,4:21-27
    [2] ( Ying Liang, Liu Weiqiang . Review and prospect of LOX/Methane rocket engine systems. Aero Weaponry, 2018,4:21-27(in Chinese))
    [3] DeLong D, Greason J , McKee KR. Liquid oxygen/liquid methane rocket engine development. SAE Technical Paper Series,2007-01-3876, AeroTech Congress & Exhibition Los Angeles,California, September 17-20
    [4] Sasaki M, Sakamoto H, Takahashi M , et al. Experimental study on combustion stability characteristics of non-swirl and swirl coaxial injector. AIAA Paper 98- 3438, 1998
    [5] Lietz CF, Harvazinski ME, Schumaker SA , et al. Time-resolved single-element gas-centered swirl-coaxial injector simulations for combustion stability prediction. AIAA Paper 2017- 4690, 2017
    [6] Benmansour A, Liazid A, Logerais Pierre-Olivier , et al. A 3D numerical study of LO$_{2}$/GH$_{2}$supercritical combustion in the ONERA Mascotte test-rig configuration. Journal of Thermal Science, 2016,25(1):97-108
    [7] Starikovskaia SM . Plasma assisted ignition and combustion. Journal of Physics D: Applied Physics, 2006,39:265-299
    [8] Starikovskiy A, Aleksandrov N . Plasma-assisted ignition and combustion. Prog. Energy Combust Sci, 2013,39:61-110
    [9] Ju Y, Sun W . Plasma assisted combustion: Dynamics and chemistry. Prog. Energy Combust Sci, 2015,48:21-83
    [10] Lempert W. An overview of the AFOSR Plasma MURI Program: fundamental mechanisms, predictive modeling, and novel aerospace applications of plasma assisted combustion. AIAA Paper 2015-0154,2015
    [11] 吴云, 李应红 . 等离子体流动控制与点火助燃研究进展. 高电压技术, 2014,40(7):2024-2038
    [11] ( Wu Yun, Li Yinghong . Progress in research of plasma-assisted flow control, ignition and combustion. High Voltage Engineering, 2014,40(7):2024-2038(in Chinese))
    [12] 李平, 穆海宝, 喻琳 等. 低温等离子体辅助燃烧的研究进展、关键问题及进展. 高电压技术, 2015,41(6):2073-2083
    [12] ( Li Ping, Mu Haibao, Yu Lin , et al. Progress, key problems and prospect on low temperature plasma assisted combustion. High Voltage Engineering, 2015,41(6):2073-2083(in Chinese))
    [13] 聂万胜, 周思引, 车学科 . 纳秒脉冲放电等离子体助燃技术研究进展. 高电压技术, 2017,43(6):1749-1759
    [13] ( Nie Wansheng, Zhou Siyin, Che Xueke . Review of plasma assisted combustion technology by nanosecond pulsed discharge. High Voltage Engineering, 2017,43(6):1749-1759(in Chinese))
    [14] Starikovskiy A, Aleksandrov N, Rakitin A . Plasma-assisted ignition and deflagration-to-detonation transition. Philos. Trans. R. Soc. A, 2012,370:740-773
    [15] 张鑫, 黄勇, 李华星 . 等离子体激励器控制圆柱绕流的实验研究. 力学学报, 2018,50(6):1396-1405
    [15] ( Zhang Xin, Huang Yong, Li Huaxing . Flow control over a circular cylinder using plasma actuators. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(6):1396-1405(in Chinese))
    [16] Hutchins AR, Reach WA, Kribs JD , et al. Effects of electric fields on stabilized lifted propane flames. Journal of Energy Resources Technology-Transactions of the ASME, 2014,136:022203
    [17] Numa NM, Satija A, Cruise D , et al. Preliminary characterization of a swirl-stabilized burner for plasma-assisted combustion. AIAA Paper 2019 - 0743, 2019
    [18] 穆海宝, 喻琳, 李平 等. CH$_{4}$/O$_{2}$/He混合气体作大气压介质阻挡放电处理后其燃烧特性的改变. 高电压技术, 2014,40(10):2980-2985
    [18] ( Mu Haibao, Yu Lin, Li Ping , et al. Enhancement of premixed CH$_{4}$/O$_{2}$/He flame speed with dielectric barrier discharge. High Voltage Engineering, 2014,40(10):2980-2985(in Chinese))
    [19] Vincent-Randonnier A, Larigaldie S, Magre P , et al. Plasma assisted combustion: Effect of a coaxial DBD on a methane diffusion flame. Plasma Sources Science and Technology, 2007,16:149-160
    [20] Patel RB, Oommen C , Thomas MJ. Ignition of methane-air mixture at low temperature using dielectric barrier discharge plasma. AIAA Paper 2018 - 0134, 2018
    [21] Varella RA, Sagas Martins CA . Effects of plasma assisted combustion on pollutant emissions of a premixed flame of natural gas and air. Fuel, 2016,184:269-276
    [22] Hu H, Xu G, Fang A , et al. Non-equilibrium plasma assisted combustion of low BTU fuels. Journal of Engineering Thermophysics, 2010,31(9):1063-1066
    [23] Rosocha LA, Coates DM, Platts D , et al. Plasma-enhanced combustion of propane using a silent discharge. Phys. Plasmas, 2004,11:2950-2956
    [24] Wada T, Lefkowitz JK , Ju Y. Plasma assisted Mild combustion. AIAA Paper 2015 - 0666, 2015
    [25] 杨凌元, 李钢, 赵丽娜 等. 等离子体助燃旋流扩散火焰的光谱分析. 工程热物理学报, 2014,35(2):396-400
    [25] ( Yang Lingyuan, Li Gang, Zhao Lina , et al. Emission spectroscopy of combustion flame pulsed by dielectric barrier discharge. Journal of Engineering Thermophysics, 2014,35(2):396-400(in Chinese))
    [26] 郑殿峰, 张义宁, 郑日恒 等. 交流驱动低温等离子体点火触发爆震可行性研究. 推进技术, 2014,35(8):1146-1152
    [26] ( Zheng Dianfeng, Zhang Yining, Zheng Riheng , et al. Investigation on feasibility of ignition and detonation trigger by low temperature plasma based on AC drive. Journal of Propulsion Technology, 2014,35(8):1146-1152(in Chinese))
    [27] Dedic CE , Michael JB. Evaluation of vibrational excitation in a microwave plasma-enhanced flame using hybrid fs/ps CARS. AIAA Paper 2018 - 1025, 2018
    [28] Rousso A, Mao X, Chen Q , et al. Kinetic studies and mechanism development of plasma assisted pentane combustion. Proceedings of the Combustion Institute, 2019,37(40):5595-5603
    [29] 安红辉 . 模型发动机燃烧不稳定性若干影响因素及其试验研究. [博士论文]. 北京: 装备学院, 2017
    [29] ( An Honghui . Research on some influencing factors and experiment of combustion instability in the model of engine. [PhD Thesis]. Beijing: Equipment Academy, 2017(in Chinese))
    [30] 邵涛, 严萍 . 大气压气体放电及其等离子体应用. 北京: 科学出版社, 2015
    [30] ( Shao Tao, Yan Ping. Atmospheric Gas Discharge and Plasma Application. Beijing: Science Press, 2015(in Chinese))
    [31] 董淑玲 . 介质阻挡放电脱除NO的研究. [博士论文]. 南京: 南京理工大学, 2007
    [31] ( Dong Shuling . Study on NO removing by electric barrier discharge. [PhD Thesis]. Nanjing: Nanjing University of Science and Technology(in Chinese))
    [32] Zhou SY, Su LY, Shi TY , et al. Experimental study on the diffusive flame stabilization mechanism of plasma injector driven by AC dielectric barrier discharge. Journal of Physics D: Applied Physics, 2019,52:265202
    [33] 李帅兵, 杨睿, 罗喜胜 等. 气流作用下同轴带电射流的不稳定性研究. 力学学报, 2017,49(5):997-1007
    [33] ( Li Shuaibing, Yang Rui, Luo Xisheng , et al. Instability study of an electrified coaxial jet in a coflowing gas stream. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(5):997-1007(in Chinese))
    [34] 甘云华, 江政纬, 李海鸽 . 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报, 2017,49(6):1272-1279
    [34] ( Gan Yunhua, Jiang Zhengwei, Li Haige . A study on droplet velocity of ethanol during electrospraying process at cone-jet mode. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(6):1272-1279(in Chinese))
    [35] Bittencourt JA . Fundamentals of Plasma Physics. New York: Spriger, 2004.
    [36] 蔡国飙, 汪小卫, 李茂 等. 液体火箭发动机气气燃烧及气气喷注器技术. 北京: 国防工业出版社, 2012
    [36] ( Cai Guobiao, Wang Xiaowei, Li Mao , et al. Gas-gas Combustion and Gas-gas Injector Technology of Liquid Propellant Rocket Engine. Beijing: National Defense Industry Press(in Chinese))
  • 期刊类型引用(10)

    1. 陈央,刘晓军,彭旭龙,陈得良. 湿热环境下多孔功能梯度圆管的非线性弯曲行为. 力学学报. 2024(01): 141-148 . 本站查看
    2. 蒲育,周凤玺,滕兆春,史拴虎,刘君,任永忠. 六参数一般弹性约束FGM夹层梁的自由振动和屈曲特性. 工程力学. 2024(12): 10-20 . 百度学术
    3. 杜超凡,曹廷魁,周晓婷,章定国. 基于无网格法考虑热效应及剪切效应FGM梁的动力学建模与仿真. 动力学与控制学报. 2023(05): 16-26 . 百度学术
    4. 丁亮,范纪华,王明强,章定国. 旋转内接功能梯度材料梁刚柔热耦合动力学特性研究. 力学与实践. 2022(06): 1322-1331 . 百度学术
    5. 陈渊钊,吴文军. 匀速旋转刚环-内接柔性梁系统的共振分析. 振动工程学报. 2022(06): 1321-1328 . 百度学术
    6. 袁晗,王小军,张宏剑,牟宇,王檑,王辰. 重复使用火箭着陆缓冲的机构冲击动力学分析及实验验证. 北京大学学报(自然科学版). 2022(06): 977-988 . 百度学术
    7. 高朋,侯磊,陈予恕. 动载荷作用下中介轴承的非线性热行为研究. 力学学报. 2021(01): 248-259 . 本站查看
    8. 张青云,赵新华,刘凉,戴腾达. 空间柔性闭链机器人动力学建模与振动仿真. 农业机械学报. 2021(01): 401-409 . 百度学术
    9. 唐福强,程闻笛,赵仁豪,丁超. 基于ANSYS Workbench的热结构耦合变厚度轴向运动梁动力学研究. 机械研究与应用. 2020(01): 89-92 . 百度学术
    10. 方五益,郭晛,黎亮,章定国. 柔性铰柔性杆机器人动力学建模、仿真和控制. 力学学报. 2020(04): 965-974 . 本站查看

    其他类型引用(10)

计量
  • 文章访问数:  1560
  • HTML全文浏览量:  315
  • PDF下载量:  108
  • 被引次数: 20
出版历程
  • 收稿日期:  2019-06-10
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回