EI、Scopus 收录
中文核心期刊

复合材料水翼水动力与结构强度特性数值研究

陈倩, 张汉哲, 吴钦, 傅晓英, 张晶, 王国玉

陈倩, 张汉哲, 吴钦, 傅晓英, 张晶, 王国玉. 复合材料水翼水动力与结构强度特性数值研究[J]. 力学学报, 2019, 51(5): 1350-1362. DOI: 10.6052/0459-1879-19-107
引用本文: 陈倩, 张汉哲, 吴钦, 傅晓英, 张晶, 王国玉. 复合材料水翼水动力与结构强度特性数值研究[J]. 力学学报, 2019, 51(5): 1350-1362. DOI: 10.6052/0459-1879-19-107
Chen Qian, Zhang Hanzhe, Wu Qin, Fu Xiaoying, Zhang Jing, Wang Guoyu. THE NUMERICAL INVESTIFATION ON HYDRODYNAMIC AND STRUCTURAL STRENGTH OF A COMPOSITE HYDROFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362. DOI: 10.6052/0459-1879-19-107
Citation: Chen Qian, Zhang Hanzhe, Wu Qin, Fu Xiaoying, Zhang Jing, Wang Guoyu. THE NUMERICAL INVESTIFATION ON HYDRODYNAMIC AND STRUCTURAL STRENGTH OF A COMPOSITE HYDROFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362. DOI: 10.6052/0459-1879-19-107
陈倩, 张汉哲, 吴钦, 傅晓英, 张晶, 王国玉. 复合材料水翼水动力与结构强度特性数值研究[J]. 力学学报, 2019, 51(5): 1350-1362. CSTR: 32045.14.0459-1879-19-107
引用本文: 陈倩, 张汉哲, 吴钦, 傅晓英, 张晶, 王国玉. 复合材料水翼水动力与结构强度特性数值研究[J]. 力学学报, 2019, 51(5): 1350-1362. CSTR: 32045.14.0459-1879-19-107
Chen Qian, Zhang Hanzhe, Wu Qin, Fu Xiaoying, Zhang Jing, Wang Guoyu. THE NUMERICAL INVESTIFATION ON HYDRODYNAMIC AND STRUCTURAL STRENGTH OF A COMPOSITE HYDROFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362. CSTR: 32045.14.0459-1879-19-107
Citation: Chen Qian, Zhang Hanzhe, Wu Qin, Fu Xiaoying, Zhang Jing, Wang Guoyu. THE NUMERICAL INVESTIFATION ON HYDRODYNAMIC AND STRUCTURAL STRENGTH OF A COMPOSITE HYDROFOIL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1350-1362. CSTR: 32045.14.0459-1879-19-107

复合材料水翼水动力与结构强度特性数值研究

基金项目: 1)国家自然科学基金(51839001);国家自然科学基金(91752105);四川大学水力学与山区河流开发保护国家重点实验室开放基金资助项目
详细信息
    通讯作者:

    吴钦

  • 中图分类号: TK72

THE NUMERICAL INVESTIFATION ON HYDRODYNAMIC AND STRUCTURAL STRENGTH OF A COMPOSITE HYDROFOIL

  • 摘要: 针对复合材料水翼存在的流固耦合求解问题,结合其自身特有属性,对复合材料水翼结构变形特性进行了数值仿真计算研究.研究建立了复合材料水翼流固耦合数值计算模型,并将数值计算结果与Zarruk等的实验结果进行对比,验证模型的正确性,得出复合材料水翼尖端扭转角随雷诺数的增加而增加的研究结论.基于数值计算模型,系统地研究了不同铺层角对复合材料水翼水动力特性及强度特性的影响,结果表明:不同铺层角复合材料水翼的尖端扭转角,随铺层角的增大而减小,而其尖端位移量随铺层角的增大先减小后增大.为了削弱工程常数的影响对复合材料水翼变形的影响,研究提出了无量纲扭转角和无量纲位移量,进一步探究复合材料水翼结构的弯扭耦合作用对其变形特性的影响.最后利用蔡$\!$-$\!$-$\!$吴失效准则进行复合材料水翼强度特性的判断和分析,结果表明:不同铺层角复合材料水翼的蔡$\!$-$\!$-$\!$吴系数,随铺层角的增大呈现先减小后增大的趋势,其中0$^\circ$铺层时的复合材料水翼蔡$\!$-$\!$-$\!$吴系数最小,50$^\circ$铺层时的复合材料水翼的蔡$\!$-$\!$-$\!$吴系数最大.
    Abstract: This paper investigates systematically the structural deformation characteristics of composite hydrofoils with own unique properties by numerical method to solve the fluid structure interaction problem on the composite hydrofoils. It establishes a numerical model of composite hydrofoils with fluid structure interaction in this study, which verifies the correctness of the numerical model by comparing the calculated results to the experimental results of Zarruk, and the numerical results show that the tip torsion angle of the composite hydrofoils increases with the increase of the Reynolds number. This paper investigates and analyses systematically the influence of the ply angle on the hydrodynamic performance and strength performance of composite hydrofoils in view of the numerical method. The results illustrate that the tip torsion angle of composite hydrofoils decreases with increasing the ply angle, while the tip displacement of composite hydrofoils decrease firstly and then increase with increase of ply angle. The study proposes two dimensionless, the dimensionless torsion angle and the dimensionless displacement, to eliminate the effect of engineering constants of composite on the structure deformation of composite hydrofoils, which is used to further investigate the influence of the bending-torsion coupling effect on the deformation characteristics of the composite hydrofoils. The strength of the composite hydrofoils is judged and studied by using the Tsai-Wu failure criterion. The numerical results show that the Tsai-Wu coefficient of composite hydrofoils decreases firstly and then increases with the increase of the ply angle, where the lowest Tsai-Wu coefficient and the largest Tsai-Wu coefficient appears in the 0$^\circ$layered composite hydrofoil and the 50$^\circ$layered composite hydrofoil, respectively.
  • [1] 陆力, 彭忠年, 王鑫 等. 水力机械研究领域的发展. 中国水利水电科学研究院学报, 2018,16(5):442-450
    [1] ( Lu Li, Peng Zhongnian, Wang Xin , et al. Review on hydraulic machinery research. Journal of China Institute of Water Resources and Hydropower Research, 2018,16(5):442-450 (in Chinese))
    [2] 汤玲迪, 袁寿其, 邱志鹏 . 卷盘式喷灌机水涡轮发展与研究现状. 排灌机械工程学报, 2018,36(10):963-968
    [2] ( Tang Lingdi, Yuan Shouqi, Qiu Zhipeng . Development and research status of water turbine for hose reel irrigator. Chinese Journal of Drainage and Irrigation Machinery Engineering, 2018,16(5):442-450 (in Chinese))
    [3] 沈泓萃, 姚惠之 . 增效降噪的潜艇前置导叶螺旋浆研究. 船舶力学, 1997,1(1):1-7
    [3] ( Shen Hongcui, Yao Huizhi . Submarine Guide Vane propeller for increasing efficiency and reducing noise. Chinese Journal of Ship Mechanics, 1997,1(1):1-7 (in Chinese))
    [4] 黄彪, 吴钦, 王国玉 . 非定常空化流动研究现状与进展. 排灌机械工程学报, 2018,36(1):1-14
    [4] ( Huang Biao, Wu Qin, Wang Guoyu . Progress and prospects of investigation into unsteady cavitating flows. Chinese Journal of Drainage and Irrigation Machinery, 2018,36(1):1-14 (in Chinese))
    [5] 黄超, 翁翕, 刘谋斌 . 超疏水小球低速入水空泡研究. 力学学报, 2019,51(1):44-53
    [5] ( Huang Chao, Weng Xi, Liu Moubin . Study on low-speed water intrusion of superhydrophobic pellets. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):44-53 (in Chinese))
    [6] 袁丹青, 陈向阳, 白滨 等. 水力机械空化空蚀问题的研究进展. 排灌机械, 2009,27(4):269-272
    [6] ( Yuan Danqing, Chen Xiangyang , Bai bin, et al. Research progress of cavitation and erosion in hydraulic machinery. Chinese Journal of Drainage and Irrigation Machinery, 2009,27(4):269-272 (in Chinese))
    [7] Mozafari H, Khatami S, Molatefi H . Out of plane crushing and local stiffness determination of proposed foam filled sandwich panel for Korean Tilting Train eXpress-Numerical study. Materials and Design, 2015,66:400-411
    [8] 马骋, 钱正芳, 陈科 等. 螺旋桨流固耦合多目标优化设计. 船舶力学, 2017(z1):101-105
    [8] ( Ma Cheng, Qian Zhengfang, Chen Ke , et al. Multi-objective optimal design of ship propeller considering fluid-structure interaction. Chinese Journal of Ship Mechanics, 2017(z1):101-105 (in Chinese))
    [9] 张旭婷, 洪毅, 袁凤 等. 复合材料螺旋桨流固耦合分析方法的发展和研究现状. 玻璃钢/复合材料, 2016(6):84-87
    [9] ( Zhang Xuting, Hong Yi, Yuan Feng , et al. The development and research of fluid-structure interaction for composite propeller. Chinese Journal of Fiber Reinforced Plastics/Composites, 2016(6):84-87 (in Chinese))
    [10] Dayyani I, Shaw A, Friswell M . The mechanics of composite corrugated structures: A review with applications in morphing aircraft. Composite Structures, 2015,133:358-380
    [11] Zyka K, Mohajerani A . Composite piles: A review. Construction and Building Materials, 2016,107:394-410
    [12] 杜善义 . 先进复合材料与航空航天. 复合材料学报. 2007(1):1-12
    [12] ( Du Shanyi . Advanced composite materials and aerospace engineering. Chinese Journal of Acta Materiae Compositae Sinica , 2007(1):1-12 (in Chinese))
    [13] Boisse P, Zouari B, Daniel JL . Importance of in-plane shear rigidity in finite element analyses of woven fabric composite preforming. Composites Part A, 2006,37(12):2201-2212
    [14] 林德春, 潘鼎, 高健 等. 碳纤维复合材料在航空航天领域的应用. 玻璃钢, 2007(1):18-28
    [14] ( Lin Dechun, Pan Ding, Gao Jian , et al. Application of carbon fiber composite materials in aerospace. Chinese Journal of Fiber Reinforced Plastics, 2017(1):18-28 (in Chinese))
    [15] anguli R, Chopra I . Aeroelastic tailoring of composite couplings and blade geometry of a helicopter rotor using optimization methods. Journal of American Helicopter Society, 1997,42(3):218-228
    [16] Soykasap O, Hodges D . Performance enhancement of a composite tilt-rotor using aeroelastic tailoring. Journal of Aircraft, 2000,37:850-858
    [17] 李晔, 王本龙, 詹世革 . "2018流固耦合力学在船舶与海洋新能源中的应用研究领域科学家论坛"学术综述. 力学学报, 2019,51(1):300-305
    [17] ( Li Ye, Wang Benlong, Zhan Shige . Review of the 2018 symposium on application of fluid-structure interaction in naval architecture and offshore renewable energy. Chinese Journal of Theoretical and Applied Mechanics, 2019,51(1):300-305 (in Chinese))
    [18] 马潇健, 黄彪, 王国玉 . 复合材料边界附近空泡动力学特性研究. 水动力学研究与进展, 2018,33(6):5-10
    [18] ( Ma Xiaojian, Huang Biao, Wang Guoyu . The experimental investigation of bubble dynamics near the composite plates. Chinese Journal of Hydrodynamics, 2018,33(6):5-10 (in Chinese))
    [19] Zarruk G, Brandner P, Pearce B . Experimental study of the steady fluid-structure interaction of flexible hydrofoils. Journal of Fluids and Structure, 2014,51:326-343
    [20] Motley MR, Yin LY . Influence of uncertainties on the response and reliability of self-adaptive composite rotors. Composite Structures, 2011,94(1):114-120
    [21] Young YL, Baker JW, Motley MR . Reliability-based design and optimization of adaptive marine structures. Composite Structures, 2010,92(2):244-253
    [22] Berthelot JM, Sefrani Y . Damping analysis of unidirectional glass and Kevlar fiber composites. Composites Science & Technology}, 2004,64(9):1261-1278
    [23] Zhang HZ, Wu Q, Li YP , et al. Numerical investigation of the deformation characteristics of a composite hydrofoil with different ply angles. Ocean Engineering, 2018,163:348-357
    [24] 胡璐, 闫寒, 张文明 等. 黏性流体环境下V型悬臂梁结构流固耦合振动特性研究. 力学学报, 2018,50(3):643-653
    [24] ( Hu Lu, Yan Han, Zhang Wenming , et al. Analysis of flexural vibration of v-shaped beams immersed in viscous fluids. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(3):643-653(in Chinese))
    [25] 何涛 . 基于ALE有限元法的流固耦合强耦合数值模拟. 力学学报, 2018,50(2):395-404
    [25] ( He Tao . A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary lagrangian-eulerian finite element formulation. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):395-404 (in Chinese))
    [26] Murray RE, Doman DA, Pegg MJ . Finite element modeling and effects of material uncertainties in a composite laminate with bend--twist coupling. Composite Structures, 2015,121:362-376
    [27] Brandon C, Paul D, Stephen M . Numerical modelling and experimental determination of the dynamic behaviour of composite structures. Inter-noise, 2014: 1-10
    [28] Wu Q, Huang B, Wang GY , et al. The transient characteristics of cloud cavitating flow over a flexible hydrofoil. International Journal of Multiphase Flow, 2018,99:162-173
    [29] 吴钦, 黄彪, 王国玉 等. 基于完全耦合算法的绕水翼流固耦合特性研究. 船舶力学, 2017,21(7):804-813
    [29] ( Wu Qin, Huang Biao, Wang Guoyu , et al. Fluid structure interaction analysis of a hydrofoil based on fully coupled algorithm. Chinese Journal of Ship Mechanics, 2017,21(7):804-813 (in Chinese))
    [30] Marshall JG, Imregun M . A review of aeroelasticity methods with emphasis on turbomachinery applications. Journal of Fluids and Structures, 1996,11:973-982
    [31] 韩占忠, 王国玉 . 工程流体力学基础. 北京: 北京理工大学出版社, 2012
    [31] ( Han Zhanzhong, Wang Guoyu. Engineering Fluid Mechanics Foundation. Beijing: Beijing University of Technology Press, 2002 (in Chinese))
    [32] Launder BE, Spalding DB , The numerical computation of turbulent flows. Computational Methods in Applied Mechanics and Engineering, 1974,3(2):269-289
    [33] Young, YL, Garg N. Load-dependent bend-twist coupling effects on the steady-state hydroelastic response of composite hydrofoils. Composite Structures, 2018,189:398-418
    [34] 沈观林, 胡更开 . 复合材料力学. 北京: 清华大学出版社, 2006
    [34] ( Shen Guanlin, Hu Gengkai. Mechanics of Composite Materials. Beijing: Tsinghua University Press, 2006 (in Chinese))
    [35] Yeh HY, Richards WL . The yeh-stratton criterion for stress concentrations in fiber-reinforced composite materials. Journal of Composite Materials, 1998,32(2):141-157
  • 期刊类型引用(8)

    1. 张晶,张晨星,王惠,梁欣欣,吴钦. 非均匀伴流中复合材料螺旋桨非定常空化流固耦合研究. 船舶力学. 2024(03): 341-353 . 百度学术
    2. 张丹丹,张晶,刘影,吴钦,黄彪,王国玉. 复合材料螺旋桨敞水性能与结构特性研究. 船舶力学. 2023(02): 173-184 . 百度学术
    3. 张后胜,黄彪,吴钦,姚志峰,傅晓英. 复合材料水翼水动力响应数值模拟研究. 水动力学研究与进展A辑. 2022(02): 159-171 . 百度学术
    4. 刘昊,瞿叶高,孟光. 剪切流作用下层合梁非线性振动特性研究. 力学学报. 2022(06): 1669-1679 . 本站查看
    5. 许灿,朱平,刘钊,陶威. 平纹机织碳纤维复合材料的多尺度随机力学性能预测研究. 力学学报. 2020(03): 763-773 . 本站查看
    6. 曹明月,张启,吴建国,葛敬冉,梁军. 缝合式C/SiC复合材料非线性本构关系及断裂行为研究. 力学学报. 2020(04): 1095-1105 . 本站查看
    7. 李正,杨庆生,尚军军,刘夏. 面内随机堆叠石墨烯复合材料压阻传感机理与压阻性能. 力学学报. 2020(06): 1700-1708 . 本站查看
    8. 李则霖,李晖,王东升,任朝晖,祖旭东,周晋,官忠伟,王相平. 低速冲击激励下嵌入黏弹性阻尼芯层的纤维金属混杂层合板动态响应预测模型. 力学学报. 2020(06): 1690-1699 . 本站查看

    其他类型引用(1)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 9
出版历程
  • 收稿日期:  2019-04-25
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回