EI、Scopus 收录
中文核心期刊

浮力气泡对水平壁面的回弹动力学特性

张洋, 陈科, 尤云祥, 盛立

张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. DOI: 10.6052/0459-1879-19-071
引用本文: 张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. DOI: 10.6052/0459-1879-19-071
Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. DOI: 10.6052/0459-1879-19-071
Citation: Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. DOI: 10.6052/0459-1879-19-071
张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. CSTR: 32045.14.0459-1879-19-071
引用本文: 张洋, 陈科, 尤云祥, 盛立. 浮力气泡对水平壁面的回弹动力学特性[J]. 力学学报, 2019, 51(5): 1285-1295. CSTR: 32045.14.0459-1879-19-071
Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. CSTR: 32045.14.0459-1879-19-071
Citation: Zhang Yang, Chen Ke, You Yunxiang, Sheng Li. BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(5): 1285-1295. CSTR: 32045.14.0459-1879-19-071

浮力气泡对水平壁面的回弹动力学特性

基金项目: 1) CSC项目(201806230204);航天先进制造联合基金项目资助.(USCAST2016-2)
详细信息
    通讯作者:

    陈科

  • 中图分类号: O359

BOUNCING BEHAVIORS OF A BUOYANCY-DRIVEN BUBBLE ON A HORIZONTAL SOLID WALL

  • 摘要: 黏性液体中的气泡浮升运动有趣而又复杂,而气泡与固壁边界的相互作用更是广泛存在于实际工程中.基于轴对称数值计算,模拟了浮力驱动下气泡在黏性液体中上升并与顶部水平固壁面碰撞、回弹的过程.采用考虑表面张力的不可压、变密度Navier-Stokes方程来描述气液两相流流动,并通过基于分级八叉树的有限体积法进行数值求解.为准确捕捉气泡在回弹过程中局部而迅速的拓扑变化,采用了动态自适应网格技术耦合流体体积法(volume of fluid,VOF)来重构气泡的形状. 从气泡对壁面的碰撞和回弹的基本现象入手,研究了伽利略数 Ga和接触速度$U_{a}$对气泡回弹动力学特性的影响, 分析了气泡碰撞过程中涡结构的变化.用回弹高度$H$、回弹周期$T$、长宽比{$A_{r}$}、浮升速度$U$、轴向位置$z$和回复系数$C_{r}$等参数来表征不同条件时气泡的运动和形状特性. 研究结果表明,气泡的回弹运动特性对 Ga十分敏感. Ga的增大可加剧气泡形变, 促进气泡的回弹运动, 增多回弹次数,增大回弹参数($T$和$H)$, 提升回复系数. 然而,接触速度并非决定气泡回弹动力学的控制参数, $U_{a}$的改变并不会改变回复系数.
    Abstract: It is not only interesting but also complex that buoyancy-driven bubbles rising in viscous liquids. In particular, the interactions between bubbles and boundaries (e.g., solid walls) is relevant in practical applications and these interactions may have a significant effect in the global behaviors of the multi-phase fluids. In this work, the rising, collision and bouncing to a horizontal solid wall for a single bubble are studied by axisymmetric computations. The incompressible, density-variable Navier-Stokes equations with surface tension are used to describe the gas-liquid flow and are solved by a tree-based finite volume method (FVM). The evolution of bubble shape is implemented by using a volume of fluid (VOF) approach that combines a balanced surface tension force calculation and a height-function curvature estimation. To finely resolve the local but fast topological evolutions of bubble, the technique of adaptive mesh refinement (AMR) is used. Starting with the basic phenomenon of bubble impacting and bouncing, we explore the effects of Galilei number Ga and approach velocity $U_{\rm a}$. To study the bubble behaviors under different conditions both qualitatively and quantitatively, the evolution of the velocity vector field and a lot of parameters such as bouncing height $H$, bouncing period $T,$rising velocity $U$, axial coordinate $z$and coefficient of restitution $C_{\rm r }$are analyzed. Based on the results, we find that the bubble bouncing behaviors are pretty sensitive to the Galilei number. The increase of Ga promotes the bouncing and signifies the deformation of bubbles, increasing the collisions of bubbles, bouncing parameters and the coefficient of restitution. However, the value of $C_{\rm r}$is nearly unaffected by the variation of the approach velocity, indicating that $U_{\rm a}$is not a governing parameter for the bubble bouncing motion.
  • [1] 李帅, 张阿漫 . 上浮气泡在壁面处的弹跳特性研究. 物理学报, 2014,63(5):054705
    [1] ( Li Shuai, Zhang Aman . Study on a rising bubble bouncing near a rigid boundary. Acta Physica Sinica, 2014,63(5):054705 (in Chinese))
    [2] 邱超, 张会臣 . 单个上升空泡撞击顶部壁面的变形和回弹特性研究. 机械工程学报, 2014,50(14):191-196
    [2] ( Qiu Chao, Zhang Huichen . Deformation and rebound characteristics of single rising bubble impacting against top wall. Chin[J] Mech Eng-EN, 2014,50(14):191-196 (in Chinese))
    [3] 张洋, 陈科, 尤云祥 等. 壁面约束对裙带气泡动力学的影响. 力学学报, 2017,49(5):1050-1058
    [3] ( Zhang Yang, Chen Ke, You Yun-xiang , et al. Confinement effect on the rising dynamics of a skirted bubble. Chin J Theor Appl Mech, 2017,49:1050-1058(in Chinese))
    [4] Liu LT, Yao XL, Zhang AM , et al. Numerical analysis of the jet stage of bubble near a solid wall using a front tracking method. Phys Fluids, 2017,29(1):012105
    [5] 张阿漫, 姚熊亮 . 近壁面气泡的运动规律研究. 物理学报, 2008,57(3):1662-1671
    [5] ( Zhang Aman, Yao Xiongliang . The law of the bubble motion near the wall. Acta Physica Sinica, 2008,57(3):1662-1671 (in Chinese))
    [6] 刘海龙, 沈学峰, 王睿 等. 纳米流体液滴撞击壁面铺展动力学特性研究. 力学学报, 2018,50(5):1024-1231
    [6] ( Liu Hailong, Shen Xuefeng, Wang Rui , et al. Study on spreading characteristics of nanofluid droplet impacting on solid surface. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(5):1024-1231 (in Chinese))
    [7] 周剑宏, 童宝宏, 王伟 , 等. 含气泡油滴撞击油膜壁面时气泡的变形与破裂. 力学学报, 2018,50(2):427-37
    [7] ( Zhou Jianhong, Tong Baohong, Wang Wei , et al. Deformation and rupture of bubble when the hollow droplet impacts on the film. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(2):427-437 (in Chinese))
    [8] Bhaga D, Weber ME . Bubbles in viscous liquids: Shapes, wakes and velocities. J Fluid Mech, 1981,105(-1):61-85
    [9] Sharaf DM, Premlata AR, Tripathi MK , et al. Shapes and paths of an air bubble rising in quiescent liquids. Phys Fluids, 2017,29(12):122104
    [10] Clift R, Grace JR, Weber ME. Bubbles , Drops, Particles. New York: Academic Press, 2005
    [11] 闫红杰, 赵国建, 刘柳 等. 静止水中单气泡形状及上升规律的实验研究. 中南大学学报(自然科学版), 2016,47(7):2513-2520
    [11] ( Yan Hongjie, Zhao Guojian, Liu Lin , et al. Experimental study on shape and rising behavior of single bubble in stagnant water. J Cent South Univ, 2016,47(7):2513-2520 (in Chinese))
    [12] 李帅, 孙龙泉, 张阿漫 . 水中上浮气泡动态特性研究. 物理学报, 2014,63(18):287-299
    [12] ( Li Shuai, Sun Longquan, Zhang Aman . Dynamic behavior of rising bubble. Acta Physica Sinica, 2014,63(18):287-299 (in Chinese))
    [13] 孙鹏楠, 李云波, 明付仁 . 自由上浮气泡运动特性的光滑粒子流体动力学模拟. 物理学报, 2015,64(17):174701
    [13] ( Sun Pengnan, Li Yunbo, Ming Furen . Numerical simulation on the motion characteristics of freely rising bubbles using smoothed particle hydrodynamics method. Acta Physica Sinica, 2015,64(17):174701 (in Chinese))
    [14] Zhang J, Ni M . What happens to the vortex structures when the rising bubble transits from zigzag to spiral? J Fluid Mech, 2017,828:353-373
    [15] Joshi JB, Nandakumar K, Evans GM , et al. Bubble generated turbulence and direct numerical simulations. Chem Eng Sci, 2017,157:26-75
    [16] Magnaudet J, Eames I . The motion of high-Reynolds-number bubbles in inhomogeneous flows. Annu Rev Fluid Mech, 2000,32(1):659-708
    [17] Tripathi MK, Sahu KC, Govindarajan R . Dynamics of an initially spherical bubble rising in quiescent liquid. Nat Commun, 2015,6:6268
    [18] Zhang Y, Chen K, You Y , et al. Coalescence of two initially spherical bubbles: Dual effect of liquid viscosity. Int J Heat Fluid Fl, 2018,72:61-72
    [19] Tsao HK, Koch DL . Observations of high Reynolds number bubbles interacting with a rigid wall. Phys Fluids, 1997,9(9):44-56
    [20] Klasevoer E, Chevaillier J-P, Maté A , et al. Model and experiments of a drop impinging on an immersed wall. Phys Fluids, 2001,13(1):45-57
    [21] Legendre D, Daniel C, Guiraud P . Experimental study of a drop bouncing on a wall in a liquid. Phys Fluids, 2005,17(9):097105
    [22] Zenit R, Legendre D . The coefficient of restitution for air bubbles colliding against solid walls in viscous liquids. Phys Fluids, 2009,21(8):083306
    [23] Kosior D, Zawala J, Malysa K . Influence of n-octanol on the bubble impact velocity, bouncing and the three phase contact formation at hydrophobic solid surfaces. Colloid Surface A, 2014,441:88-95
    [24] Zawala J, Dabros T . Analysis of energy balance during collision of an air bubble with a solid wall. Phys Fluids, 2013,25(12):123101
    [25] Zawala J, Krasowska M, Dabros T , et al. Influence of bubble kinetic energy on its bouncing during collisions with various interfaces. Can J Chem Eng, 2007,85(5):669-78
    [26] Fujasová-Zedníková M, Vobecká L, Vejrazka J . Effect of solid material and surfactant presence on interactions of bubbles with horizontal solid surface. Can J Chem Eng, 2010,88(4):473-81
    [27] Pelletier E, Béguin C, étienne S . Experiments of air bubbles impacting a rigid wall in tap water. Phys Fluids, 2015,27(12):123302
    [28] Zhang A, Sun P, Ming F . An SPH modeling of bubble rising and coalescing in three dimensions. Comput Method Appl M, 2015,294:189-209
    [29] Wu W, Liu Y, Zhang A . Numerical investigation of 3D bubble growth and detachment. Ocean Eng, 2017,138:86-104
    [30] Canot é, Davoust L, Hammoumi ME , et al. Numerical simulation of the buoyancy-driven bouncing of a 2-D bubble at a horizontal wall. Theor Comp Fluid Dyn, 2003,17(1):51-72
    [31] Omori T, Kayama H, Tukovic Z , et al. Interface resolving simulation of bubble-wall collision dynamics//Proceedings of the International Conference on Multiphase Flow, F, 2010
    [32] Qin T, Ragab S, Yue P . Axisymmetric simulation of the interaction of a rising bubble with a rigid surface in viscous flow. Int J Multiphas Flow, 2013,52:60-70
    [33] Zawala J . ``Immortal'' liquid film formed by colliding bubble at oscillating solid substrates. Phys Fluids, 2016,28(5):057103
    [34] Albadawi A, Donoghue DB, Robinson AJ , et al. On the assessment of a VOF based compressive interface capturing scheme for the analysis of bubble impact on and bounce from a flat horizontal surface. Int J Multiphas Flow, 2014,65:82-97
    [35] Denner F . Wall collision of deformable bubbles in the creeping flow regime. Eur J Mech B-fluid, 2018,70:36-45
    [36] Zhang A, Li S, Cui J . Study on splitting of a toroidal bubble near a rigid boundary. Phys Fluids, 2015,27(6):062102
    [37] Zawala J, Kosior D, Dabros T , et al. Influence of bubble surface fluidity on collision kinetics and attachment to hydrophobic solids. Colloid Surface A, 2016,505:47-55
    [38] 史冬岩, 王志凯, 张阿漫 . 相同尺度下气泡与复杂壁面的耦合特性研究. 物理学报, 2014,63(17):533-538
    [38] ( Shi D, Wang Z, Zhang A . Study on coupling characteristics between bubble and complex walls at the same scale. Acta Physica Sinica, 2014,63(17):533-538 (in Chinese))
    [39] Ye X, Yao X, Han R . Dynamics of cavitation bubbles in acoustic field near the rigid wall. Ocean Eng, 2015,109:507-516
    [40] Popinet S . Gerris: a tree-based adaptive solver for the incompressible Euler equations in complex geometries. J Comput Phys, 2003,190(2):572-600
    [41] Chorin AJ . On the convergence of discrete approximations to the Navier-Stokes equations. Math Comput, 1989,23(106):35-47
    [42] Bell JB, Colella P, Glaz HM . A second-order projection method for the incompressible Navier-Stokes equations. J Comput Phys, 1989,85(2):257-283
    [43] Popinet S . An accurate adaptive solver for surface-tension-driven interfacial flows. J Comput Phys, 2009,228(16):5838-5866
    [44] Cano-Lozano JC, Bohorquez P, Martínez-Bazán C . Wake instability of a fixed axisymmetric bubble of realistic shape. Int J Multiphas Flow, 2013,51:11-21
    [45] Cano-Lozano JC, Martínez-Bazán C, Magnaudet J , et al. Paths and wakes of deformable nearly spheroidal rising bubbles close to the transition to path instability. Phys Rev Fluids, 2016,1(5):053604
    [46] Gumulya M, Joshi JB, Utikar RP , et al. Bubbles in viscous liquids: Time dependent behaviour and wake characteristics. Chem Eng Sci, 2016,144:298-309
  • 期刊类型引用(5)

    1. 黄焱,孙策,田育丰. 气垫平台破冰阻力的模型试验研究. 力学学报. 2021(03): 714-727 . 本站查看
    2. 王悦柔,王军锋,刘海龙. 电场作用下气泡上升行为特性的数值计算研究. 力学学报. 2020(01): 31-39 . 本站查看
    3. 孙姣,周维,蔡润泽,陈文义. 垂直壁面附近上升单气泡的弹跳动力学研究. 力学学报. 2020(01): 1-11 . 本站查看
    4. 邓斌,王孟飞,黄宗伟,伍志元,蒋昌波. 波浪作用下直立结构物附近强湍动掺气流体运动的数值模拟. 力学学报. 2020(02): 408-419 . 本站查看
    5. 王巍,唐滔,卢盛鹏,张庆典,王晓放. 主动射流控制水翼空化的数值模拟与分析. 力学学报. 2019(06): 1752-1760 . 本站查看

    其他类型引用(3)

计量
  • 文章访问数:  1991
  • HTML全文浏览量:  229
  • PDF下载量:  396
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-03-25
  • 刊出日期:  2019-09-17

目录

    /

    返回文章
    返回