EI、Scopus 收录
中文核心期刊

一种非线性强度准则及转换应力法

万征, 宋琛琛, 孟达

万征, 宋琛琛, 孟达. 一种非线性强度准则及转换应力法[J]. 力学学报, 2019, 51(4): 1210-1222. DOI: 10.6052/0459-1879-19-039
引用本文: 万征, 宋琛琛, 孟达. 一种非线性强度准则及转换应力法[J]. 力学学报, 2019, 51(4): 1210-1222. DOI: 10.6052/0459-1879-19-039
Wan Zheng, Song Chenchen, Meng Da. A NONLINEAR STRENGTH CRITERION AND TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1210-1222. DOI: 10.6052/0459-1879-19-039
Citation: Wan Zheng, Song Chenchen, Meng Da. A NONLINEAR STRENGTH CRITERION AND TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1210-1222. DOI: 10.6052/0459-1879-19-039
万征, 宋琛琛, 孟达. 一种非线性强度准则及转换应力法[J]. 力学学报, 2019, 51(4): 1210-1222. CSTR: 32045.14.0459-1879-19-039
引用本文: 万征, 宋琛琛, 孟达. 一种非线性强度准则及转换应力法[J]. 力学学报, 2019, 51(4): 1210-1222. CSTR: 32045.14.0459-1879-19-039
Wan Zheng, Song Chenchen, Meng Da. A NONLINEAR STRENGTH CRITERION AND TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1210-1222. CSTR: 32045.14.0459-1879-19-039
Citation: Wan Zheng, Song Chenchen, Meng Da. A NONLINEAR STRENGTH CRITERION AND TRANSFORMATION STRESS METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1210-1222. CSTR: 32045.14.0459-1879-19-039

一种非线性强度准则及转换应力法

基金项目: 1) 国家自然科学青年基金资助项目(11402260)
详细信息
    通讯作者:

    万征

  • 中图分类号: TU43

A NONLINEAR STRENGTH CRITERION AND TRANSFORMATION STRESS METHOD

  • 摘要: 岩土材料在二维破坏模式下具有较强烈的曲线形态,在一般剪应力与正应力空间中提出用幂参数曲线来表达上述曲线,该曲线与摩尔圆的外切点即对应为破坏应力点,则利用该点的外切直线斜率的反正切值来得到有效滑移角.对于三维单元体,共存在三个有效滑移角,利用三个有效滑移角确定出空间有效滑移面.基于岩土材料为摩擦型材料这一基本特性,利用空间有效滑移面上的应力比为一定值作为衡量材料破坏与否的判断准则,基于上述思路推导得到了t强度准则,在偏平面上,t准则开口形状为介于Von-Mises圆形曲线到SMP曲边三角形形态.在子午面上,引入开口的幂函数作为反映静水压力效应以及剪切破坏的曲线,而闭口的水滴型屈服面函数作为反映体积压缩屈服曲线,反映了岩土材料的压剪耦合特性.基于所提出的t强度准则, 推导了变换应力公式,可将以$p,q$为应力量的二维模型简单方便的转换为三维应力状态本构模型.通过强度以及多种应力路径的测试对比,验证了所提t准则及基于该准则的变换应力公式的合理性.
    Abstract: The curve is expressed by a power parameter curve in the space of normal stress and shear stress. The outer tangent point of the curve and the mohr's circle corresponds to the point of failure stress point. Then, the inverse tangent value of the slope of the outer tangent line at the point is used to obtain the effective slip Angle.There are three effective slip angles for a three-dimensional element, and three effective slip angles are used to determine the effective slip surface of space. Based on the basic features of geotechnical materials as friction materials, the stress ratio on the effective slip surface is taken as a certain value to judge whether the material is damaged or not. The t strength criterion was derived based on the above ideas, in deviatoric plane, the shape of t criterion is a closed curve between Von-Mises criterion and SMP criterion. In the meridian plane, the introduction of open power function as a reflection of the curve of the effect of hydrostatic pressure and shear failure, and closed droplet type yield criterion function is adopted to reflect volume compression yield curve, reflect the compression-shear coupling characteristics of geotechnical material. Based on the proposed t strength criterion, the transformation stress formula is derived, which can easily transform the two-dimensional model by using $p$ and $q$ as the stress variables into a three-dimensional stress state constitutive model. Through the test and comparison of strength and various stress paths, the rationality of the proposed t criterion and the transformation stress formula based on the criterion is verified.
  • [1] Nakai T, Hinokio M . A simple elastoplastic model for sand considering the stress path dependency in three-dimensional stresses. Soils and Foundations, 2004,44(2):53-70
    [2] Nakai T, Matsuoka H . Shear behaviors of sand and clay under three-dimensional stress condition. Soils and Foundations, 1983,23(2):26-42
    [3] Matsuoka H, Nakai T . Relationship arnong Tresca, Mises, Mohr Coulomb and Matsuoka-Naka failure criteria. Soil sand Foundatiens, 1985,25(4):123-128
    [4] Matsuoka H . On the significance ofthe spatial mobilized plane. Soil and Foundations, 1976,16(1):91-100
    [5] 沈珠江 . 黏土的双硬化模型. 岩土力学, 1995,16(1):1-8
    [5] ( Shen Zhujiang . A double hardening model for clays. Rock and Soil Mechanics, 1995,16(1):1-8(in Chinese))
    [6] Abelev A, Lade P V . Characterization of failure in cross-anisotropic soils. J. Eng. Mech, 2004, ASCE 130 ( 5):599-606
    [7] Kirkgard MM, Lade PV. Anisotropic three-dimensional behavior of a normally consolidated Clay. Can. Geotech. J, 1993: 30(4), 848-858
    [8] Matsuok AH, Jun-Ichi H, Kiyoshi H . Deformation and failure of anisotropic and deposits. Soil Mechanics and Foundation Engineering, 1984,32(11):31-36
    [9] Matsuok AH, Nakai T . Stress-deformation and strength characteristics of soil under three different principle stresses// Proceedings of JSCE, 1974,232:59-70
    [10] Matsuok AH, Yao YP, Sun DA . The cam-clay models revised by the SMP criterion. Soils and Foundations, 1999,39(1):81-95
    [11] 俞茂宏, 何丽南, 宋凌宇 . 广义双剪应力强度理论及其推广. 中国科学A 辑, 1985,28(12):1113-1121
    [11] ( Yu Maohong, He Linan, Song Lingyu . Twin shear stress theory and its generalization. Science in China, Series A, 1985,28(11):1174-1183 (in Chinese))
    [12] 俞茂宏 . 岩土类材料的统一强度理论及其应用. 岩土工程学报, 1994,16(2):1-10
    [12] ( Yu Maohong . Unified strength theory for geomaterials and its applications. Chinese Journal of Geotechnical Engineering, 1994,16(2):1-10 (in Chinese))
    [13] 俞茂宏 . 线性和非线性的统一强度理论. 岩石力学与工程学报, 2007,26(4):662-669
    [13] ( Yu Maohong . Linear and nonlinear unified strength theory. Chinese Journal of Rock Mechanics and Engineering, 2007,26(4):662-669 (in Chinese))
    [14] Lade PV, Musante HM . Three-dimensional behavior of remolded clay. Journal of Geotechnical and Geoenvironmental Engineering, Division, ASCE, 1978,104(2):193-209
    [15] Lade PV, Duncan JM . Elastoplastic stress-strain theory for cohesionless soil. Journal of Geotechnical and Geoenvironmental Engineering Division, ASCE, 1975,101(10):1037-1053
    [16] 王怀亮, 宋玉普 . 多轴应力状态下混凝土的动态强度准则. 哈尔滨工业大学学报, 2014,46(4):93-97
    [16] ( Wang Huailiang, Song Yupu . A dynamic strength criterion of concrete under multiaxial stress state. Journal of Harbin Institute of Technology, 2014,46(4):93-97 (in Chinese))
    [17] Hoek E, Brown ET . Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 1997,34(8):1165-1186
    [18] 姜华 . 一种简便的岩石三维Hoek-Brown强度准则. 岩石力学与工程学报, 2015,34(s1):2996-3004
    [18] ( Jiang Hua . A simple convenient three-dimnesional Hoek-Brown criterion for rocks. Chinese Journal of Rock Mechanics and Engineering, 2015,34(s1):2996-3004 (in Chinese))
    [19] 高江平, 姜华, 蒋宇飞 等. 三剪应力统一强度理论研究. 力学学报, 2017 , 49(6):1322-1334
    [19] ( Gao Jiangping, Jiang Hua, Jiang Yufei , et al. Study of three-shear stress unified strength theory. Chinese Journal of Theoretical and Applied Mechanics, 2017 , 49(6):1322-1334 (in Chinese))
    [20] Randolph H. Generalising the Cam-clay models// Proceedings of Symposium on the Implementation of Critical State Soil Mechanics in FE Computations. Cambridge: Cambridge University Press, 1982: 1-5
    [21] Zienkiewicz OC, Pande GN . Some useful forms of isotropic yieldsurface for soil and rock mechanics //Pande GW. Finite Elements in Geomechnaics. London: Wiley, 1977: 179-190
    [22] 郑颖人, 孔亮 . 塑性力学中的分量理论-广义塑性力学. 岩土工程学报, 2000,22(3):269-274
    [22] ( Zheng Yingren, Kong Liang . Componental plastic mechanics-generalized plastic mechanics. Chinese Journal of Geotechnical Engineering, 2000,22(3):269-274(in Chinese))
    [23] Mortara . A new yield and failure criterion for geomaterials. Geotechnique, 2008,58(2):125-132
    [24] Yao YP, Kong YX . Extended UH model: Three-dimensional unified hardening model for anisotropic clays. Journal of Engineering Mechanics, 2011,138(7):853-866
    [25] Yao YP, Zhou AN . Non-isothermal unified hardening model: a thermo-elasto-plastic model for clays. Geotechnique, 2013,63(5):1328-1345
    [26] Yao YP, Wang ND . Transformed stress method for generalizing soil constitutive models. Journal of Engineering Mechanics, 2014,140(3):614-629
    [27] 刘洋 . 砂土的各向异性强度准则:原生各向异性. 岩土工程学报, 2013,35(8):1526-1534
    [27] ( Liu Yang . Anisotropic strength criteria of sand: inherent anisotropy. Chinese Journal of Geotechnical Engineering, 2013,35(8):1526-1534(in Chinese))
    [28] 曹威, 王睿, 张建民 . 横观各向同性砂土的强度准则. 岩土工程学报, 2016,38(11):2026-2032
    [28] ( Cao Wei, Wang Rui, Zhang Jianmin . New strength criterion for sand with cross-anisotropy. Chinese Journal of Rock Mechanics and Engineering, 2016,38(11):2026-2032(in Chinese))
    [29] 路德春, 梁靖宇, 王国盛 等. 横观各向同性土的三维强度准则. 岩土工程学报, 2018,40(1):54-63
    [29] ( Lu Dechun, Liang Jingyu, Wang Guosheng , et al. Three-dimensional strength criterion for transverse isotropic geomaterials. Chinese Journal of Geotechnical Engineering, 2018,40(1):54-63(in Chinese))
    [30] 王靖涛, 李国成 . 岩土材料屈服轨迹的弯曲及相关问题. 华中科技大学学报(自然科学版), 2015,43(10):92-95
    [30] ( Wang Jingtao, Li Guocheng . Yielding loci curving and related problems of geotechnical materials. Journal of Huazhong University of Science and Technology (Nature Science Edition), 2015,43(10):92-95(in Chinese))
    [31] Lu DC, Liang JY, Du XL , et al. A novel transversely isotropic strength criterion for soils based on a mobilised plane approach. Geotechnique, 2019,969(3):234-250
    [32] Chang CS, Bennett K . Micromechanical modeling for the deformation of sand with noncoaxiality between the stress and material axes. Journal of Engineering Mechanics, 2017,143(1):1-15
    [33] Yao YP, Tian Y, Gao ZW . Anisotropic UH model for soils based on a simple transformed stress method. International Journal for Numerical and Analytical Methods in Geomechanics, 2017,41(1):54-78
    [34] Oboudi M, Pietruszczak S, Razaqpur AG . Description of inherent and induced anisotropy in granular media with particles of high sphericity. International Journal of Geomechanics, 2016,16:04016006
    [35] 单仁亮, 白瑶, 黄鹏程 等. 三向受力条件下淡水冰破坏准则研究. 力学学报, 2017,49(2):467-477
    [35] ( Shan Renliang, Bai Yao, Huang Pengcheng, Song Yongwei, Guo Xiang . Experimental research on failure criteria of freshwater ice under triaxial compressive stress. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):467-477 (in Chinese))
    [36] 路德春, 李萌, 王国盛 等. 静动组合载荷下混凝土率效应机理及强度准则. 力学学报, 2017 , 49(4):940-952
    [36] ( Lu Dechun, Li Meng, Wang Guosheng , et al. Study on strain rate effect and strength criterion of concrete under static-dynamic coupled loading. Chinese Journal of Theoretical and Applied Mechanics, 2017 , 49(4):940-952 (in Chinese))
    [37] 万征, 秋仁东, 郭金雪 . 岩土的一种强度准则及其变换应力法. 力学学报, 2017,49(3):726-740
    [37] ( Wan Zheng, Guo Jinxue, Guo Jinxue . A kind of strength and yield criterion for geomaterials and its transformation stress method. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(3):726-740 (in Chinese))
    [38] 万征, 宋琛琛, 赵晓光 . 一种横观各向同性强度准则及变换应力空间. 力学学报, 2018,50(5):1168-1184
    [38] ( Wan Zheng, Song Chenchen, Zhao Xiaoguang . One kind of transverse isotropic strength criterion and the transformation stress space. Chinese Journal of Theoretical and Applied Mechanics, 2018 , 50(5):1168-1184 (in Chinese))
    [39] 姚仰平, 路德春, 周安楠 等. 广义非线性强度理论及其变换应力空间. 中国科学:E辑, 2004,34(11):1283-1299
    [39] ( Yao Yangping, Lu Dechun, Zhou Annan , et al. Generalized non-linear strength theory and transformed stress space. Science in China:Ser. E, 2004,34(11):1283-1299(in Chinese))
    [40] 路德春, 江强, 姚仰平 . 广义非线性强度理论在岩石材料中的应用. 力学学报, 2005,37(6):729-736
    [40] ( Lu Dechun, Jiang Qiang, Yao Yangping . Applications of generalized non-linear strength theory to rock materials. Chinese Journal of Theoretical and Applied Mechanics, 2005,37(6):729-736(in Chinese))
    [41] 罗汀, 姚仰平 , Chu Jian. 饱和砂土的渐近状态特性及其模拟. 中国科学:E辑, 2009,39(1):39-47
    [41] ( Luo Ting, Yao Yangping, Chu Jian . Asymptotic state behaviour and its modeling for saturated sand. Science in China:Ser. E, 2009,52(8):39-47(in Chinese))
    [42] Mogi K . Effect of the intermediate principal stress on rock failure. J. Geophys. Res, 1967,72(20):117-5131
    [43] Sutherland HB, Mesdary MS . The influence of the intermediate principal stress on the strength of sand //Proceedings of the International Conference on Soil Mechanics and Foundation Engineering, 1969: 391-399
    [44] Ramamurthy T, Rawat RC . Shear strength of sand under general stress system// Proc. 8th ICSMFE, 1973, 1-2:339-342
    [45] Wan Z . A cyclic UH model for sand. Earthquake Engineering and Engineering Vibration, 2015,14(2):229-238
    [46] Wan Z, Song C . An elastoplastic model of sand under complex loading conditions. Strength of Materials, 2018,50(4):772-780
    [47] Chowdhury EQ, Nakai T . Consequence of the tijconcept and a new modelling approach. Computers and Geotechnics, 1998: 23(4):131-164
  • 期刊类型引用(0)

    其他类型引用(1)

计量
  • 文章访问数:  2196
  • HTML全文浏览量:  360
  • PDF下载量:  140
  • 被引次数: 1
出版历程
  • 收稿日期:  2019-01-30
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回