EI、Scopus 收录
中文核心期刊

配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制

朱安, 陈力

朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. DOI: 10.6052/0459-1879-18-407
引用本文: 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. DOI: 10.6052/0459-1879-18-407
Zhu An, Chen Li. MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169. DOI: 10.6052/0459-1879-18-407
Citation: Zhu An, Chen Li. MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169. DOI: 10.6052/0459-1879-18-407
朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. CSTR: 32045.14.0459-1879-18-407
引用本文: 朱安, 陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制[J]. 力学学报, 2019, 51(4): 1156-1169. CSTR: 32045.14.0459-1879-18-407
Zhu An, Chen Li. MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169. CSTR: 32045.14.0459-1879-18-407
Citation: Zhu An, Chen Li. MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(4): 1156-1169. CSTR: 32045.14.0459-1879-18-407

配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制

基金项目: 1)国家自然科学基金(11372073);国家自然科学基金(11072061);福建省工业机器人基础部件技术重大研发平台(2014H21010011)
详细信息
    通讯作者:

    陈力

  • 中图分类号: TP241

MECHANICAL SIMULATION AND FULL ORDER SLIDING MODE COLLISION AVOIDANCE COMPLIANT CONTROL BASED ON NEURAL NETWORK OF DUAL-ARM SPACE ROBOT WITH COMPLIANT MECHANISM CAPTURING SATELLITE

  • 摘要: 讨论了空间机器人双臂捕获卫星操作过程避免关节冲击破坏的避撞柔顺控制问题. 为此在关节电机与机械臂之间设计了一种旋转 型串联弹性执行器(rotatory series elastic actuator, RSEA)--柔顺机构,其作用在于:(1) 通过其内置弹簧的拉伸或压缩变形来吸收捕获操作过程中被捕获卫星对空间机器人关节产生的冲击能量;(2) 可以利用合理设计的与之配合的避撞柔顺控制策略来保证关节冲击力矩受限在安全范围. 首先,利用第二类Lagrange方程分别建 立了捕获操作前含柔顺机构双臂空间机器人的开环分系统动力学模型与目标卫星的分系统动力学模型;之后,基于系统动量 守恒关系、闭链系统位置与速度几何约束关系,获得了捕获操作后空间机器人与被捕获卫星闭链混合体系统综合动力学方程; 最后,基于RBF神经网络提出了一种捕获操作后两者混合体系统镇定运动的全阶终端滑模避撞柔顺控制方案. 所提方案结合柔 顺机构在有效吸收、缓冲被捕获卫星冲击能量的同时,还在冲击能量过大时适时开、关空间机器人关节驱动器,以避免关节驱 动器过载、破坏;此外,还通过最小权值范数法分配了机械臂各关节力矩,以保证双臂协调操作. Lyapunov稳定性理论证明了 系统的全局稳定性,系统计算机数值仿真也验证了上述避撞柔顺控制策略的有效性.
    Abstract: The problem of collision avoidance compliance control for dual-arm space robot to protect joint due to impact in the process of capturing satellite is discussed. For this reason, a rotatory series elastic actuator (RSEA), a compliant mechanism, is designed between the joint motor and the manipulator. It has two functions: firstly, the impact energy of satellite to robot joints can be absorbed by RSEA's built-in spring through stretching or compressing in the capture operation; secondly, the impact torque of the joints can be limited in the safe range by reasonably designing a matching collision avoidance compliance control strategy. First of all, the dual-arm space robot with compliant mechanism open-loop subsystem dynamics model and the target satellite subsystem dynamics model are established before capture operation by the second Lagrange equation. Then, based on the momentum conservation and geometric constraints of the position and velocity of the closed-chain system, the closed-chain hybrid system of the space robot and the captured satellite is obtained after the capture operation. Finally, for calm control the hybrid system, based on RBF neural network, a full-order terminal sliding mode collision avoidance compliance control scheme is proposed. The proposed scheme not only can effectively absorb and buffer the impact energy in the capture operation, but can turn on or off the space robot's joint motor timely when the impact energy is too large, so as to avoid overload and damage of the joint actuator. In addition, the joint torques are allocated by the minimum weight norm theory to ensure the coordinated operation between manipulators. The global stability of the system is proved by the Lyapunov theory. At last, the effectiveness of the collision avoidance compliance control strategy is verified by computer simulation.
  • [1] Lim J, Chung J . Dynamic analysis of a tethered satellite system for space debris capture. Nonlinear Dynamics, 2018,94(4):2391-2408
    [2] 尹婷婷, 邓子辰, 胡伟鹏 等. 空间刚性杆——弹簧组合结构轨道、姿态耦合动力学分析. 力学学报, 2018,50(1):87-98
    [2] ( Yin Tingting, Deng Zichen, Hu Weipeng , et al. Dynamic modelling and simulation of orbit and attitude coupling problems for structure combined of spatial rigid rods and spring. Chinese Journal of Theoretical and Applied Mechanics, 2018,50(1):87-98 (in Chinese))
    [3] 岳宝增, 于嘉瑞, 吴文军 . 多储液腔航天器刚液耦合动力学与复合控制. 力学学报, 2017,49(2):390-396
    [3] ( Yue Baozeng, Yu Jiarui, Wu Wenjun . Rigid and liquid coupling dynamics and hybrid control of spacecraft with multiple propellanttanks. Chinese Journal of Theoretical and Applied Mechanics, 2017,49(2):390-396 (in Chinese))
    [4] Daniel EH, Carole J . On-orbit upgrade and repair: the hubble spacetelescope example. Journal of Spacecraft and Rockets, 2006,43(3):614-625
    [5] Floresabad A, Ma O, Pham K , et al. A review of space robotics technologies for on-orbit servicing. Progress in Aerospace Sciences, 2014,68(8):1-26
    [6] Xu WF, Liang B, Li B , et al. A universal on-orbit servicing system used in the geostationary orbit. Advances in Space Research, 2011,48(1):95-119
    [7] Chen L, Huang PF, Cai J , et al. A non-cooperative target grasping position prediction model for tethered space robot. Aerospace Science and Technology, 2016,58:571-581
    [8] 王靖森, 刘晓峰, 段柳成 等. 考虑关节摩擦的空间机器人动力学建模与参数辨识. 力学季刊, 2015,36(4):594-601
    [8] ( Wang Jingsen, Liu Xiaofeng, Duan Liucheng , et al. Dynamic modeling and parameter identification of a space robot considering joint friction. Chinese Quarter of Mechanics, 2015,36(4):594-601 (in Chinese))
    [9] 郭闻昊, 王天舒 . 空间机器人抓捕目标星碰撞前构型优化. 宇航学报, 2015,36(4):390-396
    [9] ( Guo Wenhao, Wang Tianshu . Pre-impact configuration optimization for a space robot capturing target satellite. Journal of Astronautics, 2015,36(4):390-396 (in Chinese))
    [10] 赵金刚, 戈新生 . 动态规划求解空间双臂机器人非完整运动最优控制问题. 力学季刊, 2016(2):225-233
    [10] ( Zhao Jingang, Ge Xinsheng . Dynamic programming for solving the optimal nonholonomic motion control problem of the bi-arm space robot. Chinese Quarterly of Mechanics, 2016(2):225-233 (in Chinese))
    [11] Davide N, Marco P, Andrea MZ , et al. Occlusion-free visual servoing for the shared autonomy teleoperation of dual-arm robots. IEEE Robotics and Automation Letters, 2018,3(2):796-803
    [12] Stolfi A, Gasbarri P, Sabatini M . A combined impedance-PD approach for controlling a dual-arm space manipulator in the capture of a non-cooperative target. Acta Astronautica, 2017,139:243-253
    [13] Zarafshan P, Moosavian SAA, Papadopoulos EG . Adaptive hybrid suppression control of space free-flying robots with flexible appendages. Robotica, 2016,34(7):1-22
    [14] Abdul Hafez AH, Mithun P, Anurag VV , et al. Reactionless visual servoing of a multi-arm space robot combined with other manipulation tasks. Robotics and Autonomous Systems, 2017,91:1-10
    [15] Coleshill E, Oshinowo L, Rembala R , et al. Dextre: Improving maintenance operations on the international space station. Acta Astronautica, 2009,64(9/10):869-874
    [16] Diftler MA, Mehling JS, Abdallah ME , et al. Robonaut 2 - The first humanoid robot in space //IEEE International Conference on Robotics and Automation. Piscataway, NJ, USA: IEEE, 2011: 2178-2183
    [17] Sabelli E, Akin DL, Carignan CR . Selecting impedance parameters for the ranger 8-DoF dexterous space manipulator //AIAA Aerospace Conference and Exhibit. Reston, VA, USA: AIAA, 2007: 1-15
    [18] Debus TJ, Dougherty SP . Overview and performance of the frontend robotics enabling near-term demonstration (FREND) robotic arm//AIAA Infotech@Aerospace Conference. Reston, VA, USA: AIAA, 2009: AIAA 2009-1870
    [19] Takahashi R, Ise H, Sato D , et al. Hydrid simulation of a dual-arm space robot colliding with a floating object //IEEE International Conference on Robotics and Automation. Piscataway, UAS: IEEE, 2008: 1202-1206
    [20] 徐文福, 刘厚德, 李成 等. 双臂空间机器人捕获运动目标的自主路径规划. 机器人, 2012,34(6):704-714
    [20] ( Xu Wengfu, Liu Houde, Li Chen , et al. Autonomous path planning of dual-arm space robot for capturing moving target. Robot, 2012,34(6):704-714 (in Chinese))
    [21] 董楸煌, 陈力 . 空间机械臂捕获卫星过程的碰撞动力学模拟及镇定运动的鲁棒控制. 计算力学学报, 2014(3):315-321
    [21] ( Dong Qiuhuang, Chen Li . Impact dynamics simulation and robust control for stabilizing of a space manipulator capturing satellite. Chinese Journal of Computational Mechanics, 2014(3):315-321 (in Chinese))
    [22] 程靖, 陈力 . 空间机器人双臂捕获卫星力学分析及镇定控制. 力学学报, 2016,48(4):832-842
    [22] ( Cheng Jing, Chen Li . Mechanical analysis and calm control of dual-arm space robot for capturing a satellite. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(4):832-842 (in Chinese))
    [23] Jia YH, Hu Q, Xu SJ . Dynamics and adaptive control of a dual-arm space robot with closed-loop constraints and uncertain inertial parameters. Acta Mechanica Sinica, 2014,30(1):112-124
    [24] 张秀丽, 谷小旭, 赵洪福 等. 一种基于串联弹性驱动器的柔顺机械臂设计. 机器人, 2016,38(4):385-394
    [24] ( Zhang Xiuli, Gu Xiaoxu, Zhao Hongfu , et al. Design of a compliant robotic arm based on series elastic actuator. Robot, 2016,38(4):385-394 (in Chinese)).
    [25] 王萌, 孙雷, 尹伟 等. 一种面向交互应用的串联弹性驱动器有限时间输出反馈控制方法. 机器人, 2016,38(5):513-521
    [25] ( Wang Meng, Sun Lei, Yin Wei , et al. A finite time output feedback control approach for interaction oriented series elastic actuators. Robot, 2016,38(5):513-521 (in Chinese))
    [26] Wang HM, Pan YP, Li SH , et al. Robust sliding mode control for robots driven by compliant actuators. IEEE Transactions on Control Systems Technology, 2018, 1-8
    [27] 谢立敏, 陈力 . 漂浮基柔性空间机器人的鲁棒控制及振动抑制. 力学学报, 2012,44(6):1057-1065
    [27] ( Xie Limin, Chen Li . Robust control and vibration suppression of free-floating flexible space robot. Chinese Journal of Theoretical and Applied Mechanics, 2012,44(6):1057-1065 (in Chinese))
    [28] Ak A, Cansever G . Three link robot control with fuzzy sliding mode controller based on rbf neural network. IEEE, 2006: 2719-2724
    [29] Wang H, Liu K, Liu X , et al. Neural-based adaptive output-feedback control for a class of nonstrict-feedback stochastic nonlinear systems. IEEE Transactions on Cybernetics, 2017,45(9):1977-1987
    [30] Zhao Dongya, Cao Qianlei, Li Shurong , et al. Adaptive full-order sliding mode control of rigid robotic manipulators //Proceedings of the 34th Chinese Control Conference, Hangzhou, China, 2015: 657-662
    [31] Corradini ML, Cristofaro A . Nonsingular terminal sliding mode control of nonlinear planar systems with global fixed-time stability guarantees. Automatica, 2018,95:561-565
    [32] Jin Y, Chang PH, Jin M , et al. Stability guaranteed time-delay control of manipulators using nonlinear damping and terminal sliding mode. IEEE Transactions on Industrial Electronics, 2013,60(8):3304-3317
    [33] Rath JJ, Karimi HR, Defoort M , et al. Output feedback active suspension control with higher order terminal sliding mode. IEEE Transactions on Industrial Electronics, 2017,64(2):1392-1402
  • 期刊类型引用(24)

    1. 陈淼,唐国元. 水下机械臂快速终端滑模轨迹跟踪控制方法及仿真研究. 机械工程师. 2024(10): 113-116+121 . 百度学术
    2. 原劲鹏,葛连正,李德伦. 双臂空间机器人闭链系统的协同柔顺控制策略研究. 空间控制技术与应用. 2023(02): 42-50 . 百度学术
    3. 朱安,陈力. 空间机械臂面向太阳能帆板在轨清洁任务的擦抹力/位阻抗控制. 力学学报. 2023(11): 2624-2635 . 本站查看
    4. 朱安,陈力. 空间机器人在轨双臂辅助航天器对接力/位置嵌套双层滑模阻抗控制. 光学精密工程. 2023(22): 3266-3278 . 百度学术
    5. 张智豪,于潇雁. 存在关节死区的空间机器人无扰快速终端滑模控制. 力学学报. 2022(03): 777-785 . 本站查看
    6. 王启生,蒋建平,李庆军,江国期,周铃松. 机器人组装超大型结构的姿-轨-柔耦合动力学仿真. 上海航天(中英文). 2022(02): 32-38+44 . 百度学术
    7. 洪梦情,丁萌,顾秀涛,郭毓. 双臂空间机器人的固定时间轨迹跟踪控制. 浙江大学学报(工学版). 2022(06): 1168-1174 . 百度学术
    8. 王启生,蒋建平,李庆军,江国期,邓子辰. 空间机器人组装超大型结构的动力学分析. 应用数学和力学. 2022(08): 835-845 . 百度学术
    9. 朱安,陈力. 基于有限时间收敛的双臂空间机器人捕获卫星主动对接力/位姿阻抗控制. 力学学报. 2022(10): 2861-2873 . 本站查看
    10. 王明明,罗建军,余敏. 基于Clamped B样条的空间非合作目标抓捕策略研究. 力学学报. 2021(02): 524-538 . 本站查看
    11. 夏鹏程,罗建军,王明明. 空间双臂机器人抓捕翻滚目标后的鲁棒稳定控制. 力学学报. 2021(04): 1138-1155 . 本站查看
    12. 华洪良,廖振强,陈勇将,徐诚. 面向夹持机构的紧凑型串联弹性力控驱动器设计与试验. 农业机械学报. 2021(12): 426-432+442 . 百度学术
    13. 付晓东,陈力. 全柔性空间机器人运动振动一体化输入受限重复学习控制. 力学学报. 2020(01): 171-183 . 本站查看
    14. 王恩美,邬树楠,吴志刚. 在轨组装空间结构面向主动控制的动力学建模. 力学学报. 2020(03): 805-816 . 本站查看
    15. 王震,祝恒佳,陈晓宇,张云清. 基于交叉型双气室空气互联悬架的全地形车侧倾特性研究. 力学学报. 2020(04): 996-1006 . 本站查看
    16. 余敏,罗建军,王明明,高登巍. 一种改进RRT~*结合四次样条的协调路径规划方法. 力学学报. 2020(04): 1024-1034 . 本站查看
    17. 张玉玲,谷勇霞,赵杰亮,阎绍泽. 机械臂臂杆刚度主动控制下的末端振动特性研究. 力学学报. 2020(04): 985-995 . 本站查看
    18. 姚文莉,刘彦平,杨流松. 基于高斯原理的非理想系统动力学建模. 力学学报. 2020(04): 945-953 . 本站查看
    19. 艾海平,陈力. 基于柔性机构捕捉卫星的空间机器人动态缓冲从顺控制. 力学学报. 2020(04): 975-984 . 本站查看
    20. 李海泉,梁建勋,吴爽,刘茜,张文明. 空间机械臂柔性捕获机构建模与实验研究. 力学学报. 2020(05): 1465-1474 . 本站查看
    21. 张奇志,张瑞,周亚丽. 单足机器人周期跳跃控制的虚拟约束方法. 力学季刊. 2020(03): 430-440 . 百度学术
    22. 许丹丹,张进. 基于改进人工势函数的航天器近距离安全控制方法. 力学学报. 2020(06): 1581-1589 . 本站查看
    23. 胡远东,陆正亮,廖文和. 低轨纳卫星质量矩姿态控制技术研究. 力学学报. 2020(06): 1599-1609 . 本站查看
    24. 沈涛,张崇峰,王卫军,冯文博,邱华勇. 基于抱爪式对接机构捕获缓冲系统动力学仿真研究. 力学学报. 2020(06): 1590-1598 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  2333
  • HTML全文浏览量:  597
  • PDF下载量:  212
  • 被引次数: 33
出版历程
  • 收稿日期:  2018-12-02
  • 刊出日期:  2019-07-17

目录

    /

    返回文章
    返回