EI、Scopus 收录
中文核心期刊

基于主动控制策略的机翼颤振特性模拟

刘楚源, 刘泽森, 宋汉文

刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
引用本文: 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
Citation: Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. DOI: 10.6052/0459-1879-18-265
刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(2): 333-340. CSTR: 32045.14.0459-1879-18-265
引用本文: 刘楚源, 刘泽森, 宋汉文. 基于主动控制策略的机翼颤振特性模拟[J]. 力学学报, 2019, 51(2): 333-340. CSTR: 32045.14.0459-1879-18-265
Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. CSTR: 32045.14.0459-1879-18-265
Citation: Chuyuan Liu, Zesen Liu, Hanwen Song. THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY[J]. Chinese Journal of Theoretical and Applied Mechanics, 2019, 51(2): 333-340. CSTR: 32045.14.0459-1879-18-265

基于主动控制策略的机翼颤振特性模拟

基金项目: 国家自然科学基金资助项目(11872047)
详细信息
    作者简介:

    2) 刘楚源,硕士研究生,主要研究方向:模态分析与主动控制. E-mail: 1631806@tongji.edu.cn

    通讯作者:

    宋汉文

  • 中图分类号: V211.47,O323

THE SIMULATION OF AIRFOIL FLUTTER CHARACTERISTIC BASED ON ACTIVE CONTROL STRATEGY

  • 摘要: 航空航天飞行器舵翼类结构的气动颤振是一种灾难性的动力学行为.在基于偶极子理论的气动弹性动力学模型中,气动载荷可表达为基于结构动力学响应的一种状态反馈的闭环控制力,控制律取决于翼型的几何参数、材料参数、结构动力学特性以及来流速度等多种条件,通常需通过实际飞行或风洞实验进行辨识与检验.在实验室条件下,以系统动力学响应的模态特征等效为前提,提出了一种基于人工主动控制的方式进行气动载荷下舵翼类结构自激颤振的特征值跟踪策略.建立并讨论了等效系统的非自伴随动力学微分方程及其特征方程的求解过程,并与通用软件的计算结果进行了对比,二者具有较好的一致性.通过优化搜索分别获得了位移和速度的最优反馈点、最优作动点位置及最优反馈增益系数,经对比计算拟合得到风速-位移增益曲线和风速-速度增益曲线,从而实现了由单点反馈、单点作动的集中力的闭环控制等效系统的真实气动力分布控制.仿真算例表明,由此预示的实验过程无需辨识和重构非定常气动力的时域波形,无需其他干预即可实现地面模拟实验,主动控制的效果满足预期,初步实现了自激颤振的特征值跟踪,为进一步推动主动控制模拟实验及颤振参数辨识提供了基础.
    Abstract: The aerodynamic flutter of aerospace vehicle Rudder-airfoil structure is a catastrophic dynamic behavior. In the aeroelastic dynamic model that is on the basis of doublet lattice theory, aerodynamic load can be expressed as a closed-loop control force that is a kind of state feedback based on structural dynamic response. In fact, the aerodynamic forces received by each node are derived from the complex coefficient proportional feedback of the displacement response and velocity response of all nodes. The control law of feedback is dependent on the geometric parameters, material parameters, dynamic characteristics of the structure, flight altitude, air density and inflow velocity etc. It usually needs to be identified and validated by actual flight or wind tunnel testing. Under laboratory conditions, with the premise of equivalent modal characteristic in system dynamic responds, a strategy is put forward that is based on active control in order to track the eigenvalues of self-excited flutter in Rudder-airfoil structure under aerodynamic load. The process of solving the non-self-adjoint dynamic differential equation and its characteristic equation of the equivalent system is established and discussed. The comparison between the computed results and those results from the common software shows good consistency. Through optimization search, the optimal feedback point for displacement and velocity, the optimal actuation point, and the optimal feedback-gain factor can be obtained respectively. The fitting of the wind velocity-displacement gain curve and wind velocity-velocity gain curve can help to realize the real contribution control of the aerodynamic force of the equivalent system. Simulation example shows that the first two modal are the main modal of flutter and higher order modals do not participate in flutter, so the active control strategy focuses on the main modal of flutter. The result also shows that the predicted experimental process does not need identification or reconstruction of the unsteady aerodynamic force in time domain. Ground simulation experiment can be achieved without any other meddles. The active control reaches satisfied effects, ensure the variation characteristics of eigenvalue, achieves preliminary eigenvalue tracking of self-excited flutter, and provides a basement to further promote the active control simulation experiment and flutter parameter identification.
  • [1] Kehoe MW . A Historical overview of flight flutter testing. NASA Technical Memorandum 4720, 1995, N96-I4084
    [2] Mcnamara JJ, Friedmann PP . Aeroelastic and aerothermoelastic analysis in hypersonic flow: Past, present, and future. AIAA Journal, 2011,49(6):1089-1122
    [3] 陈桂彬, 杨超, 邹丛青 . 气动弹性设计基础. 北京: 北京航空航天大学出版社, 2010
    [3] ( Chen Guibin, Yang Chao, Zou Congqing . Aeroelastic Design Foundation. Beijing: Beihang University Press, 2010 (in Chinese))
    [4] Kearns JP . Flutter simulation. APL Technical Digest, 1962,2(1):12-16
    [5] Naryzhny AG, Pedora AP, Smyslov VI . Vibration tests with airflow simulation in the aeroelastic investigation on dynamically scaled models. Uchenye Zapisiki TsAGU, 2001: 1-2
    [6] Zeng Jie, Kingsbury D, Ritz E , et al. GVT-based ground flutter test without wind tunnel//52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference 19th 4-7 April 2011, Denver, Colorado
    [7] Wu ZG, Chu LF, Yuan RZ , et al. Studies on aeroservoelaticity semi-physical simulation test for missiles. Science China Technological Sciences, 2012,55(1):1-7
    [8] Wu ZG, Dai YT, Yang C , et al. Aeroelastic wind-tunnel test for aerodynamic uncertainty model validation. Journal of Aircraft, 2013,50(1):47-55
    [9] Karpel M . Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling. Journal of Aircraft, 1980,19(3):221-227
    [10] Karpel M . Extensions to the minimum-state aeroelastic modeling method. AIAA Journal, 2012,29(11):2007-2009
    [11] 许云涛, 吴志刚, 杨超 . 地面颤振模拟试验中的非定常气动力模拟. 航空学报, 2012,33(11):1947-1957
    [11] ( Xu Yuntao, Wu Zhigang, Yang Chao . Simulation of the unsteady aerodynamic forces for ground flutter simulation test. Acta Aeronautica ET Astronautica Sinica, 2012,33(11):1947-1957 (in Chinese))
    [12] Daborn PM, Ind PR, Ewins DJ . Replicating aerodynamic excitation in the laboratory//Topics in Modal Analysis, Volume 7, 2014: 259-272
    [13] Daborn PM, Roberts C, Ewins DJ , et al. Next-generation random vibration tests//Topics in Modal AnalysisⅡ, Volume 8, 2014: 397-410
    [14] Daborn PM, Ind PR, Ewins DJ . Enhanced ground-based vibration testing for aerodynamic environments. Mechanical Systems & Signal Processing, 2014,49(1-2):165-180
    [15] 张景绘, 李新民 . 主、被动振动控制一体化理论及技术(IV)---主动结构和智能结构. 强度与环境, 2004,31(4):46-61
    [15] ( Zhang Jinghui, Li Xinmin . Active and passive vibration control integrated theory and technology (IV)--active structure and smart structure. Structure & Environment Engineering, 2004,31(4):46-61 (in Chinese))
    [16] Malas A, Chatterjee S . Generating self-excited oscillation in a class of mechanical systems by relay-feedback. Nonlinear Dynamics, 2014,76(2):1253-1269
    [17] Ouyang HJ . Prediction and assignment of latent roots of damped asymmetric systems by structural modifications. Mechanical Systems & Signal Processing, 2009,23(6):1920-1930
    [18] 刘海标, 宋汉文 . 主动结构动力学特征与频响特性研究. 振动与冲击, 2014,33(22):121-126
    [18] ( Liu Haibiao, Song Haiwen . Dynamic characteristics and frequency response features of active structures. Journal of Vibration and Shock, 2014,33(22):121-126 (in Chinese))
    [19] Ouisse M, Foltête E . On the properness condition for modal analysis of non-symmetric second-order systems. Mechanical Systems & Signal Processing, 2011,25(2):601-620
    [20] Warminski J, Cartmell MP, Mitura A , et al. Active vibration control of a nonlinear beam with self-and external excitations. Shock & Vibration, 2013,20(6):1033-1047
    [21] 胡海岩, 赵永辉, 黄锐 . 飞机结构气动弹性分析与控制研究. 力学学报, 2016,48(1):1-27
    [21] ( Hu Haiyan, Zhao Yonghui, Huang Rui . Studies on aeroelastic analysis and control of aircraft structures. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(1):1-27 (in Chinese))
    [22] 王在华, 胡海岩 . 具有采样反馈的力控制系统稳定性. 力学学报, 2016,48(6):1372-1381
    [22] ( Wang Zaihua, Hu Haiyan . Stability of a force control system with sampled-data feedback. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(6):1372-1381 (in Chinese))
    [23] 冯伟, 宋汉文 . 基于速度反馈控制的自激振动特性研究. 振动与冲击, 2017,36(7):86-91
    [23] ( Feng Wei, Song Hanwen . Characteristics of self-excited vibration based on speed feedback control. Journal of vibration and Shock, 2017,36(7):86-91 (in Chinese))
    [24] 牛江川, 申永军, 杨绍普 等. 基于速度反馈分数阶 PID控制的达芬振子的主共振. 力学学报, 2016,48(2):422-429
    [24] ( Niu Jiangchuan, Shen Yongjun, Yang Shaopu , et al. Primary resonance of Duffing oscillator with fractional-order PID controller based on velocity feedback. Chinese Journal of Theoretical and Applied Mechanics, 2016,48(2):422-429(in Chinese))
    [25] Zhao XW, Gouder K, Graham JMR , et al. Buffet loading, dynamic response and aerodynamic control of a suspension bridge in a turbulent wind. Journal of Fluids & Structures, 2016,62(3):384-412
    [26] Gouder K, Zhao XW, Limebeer DJN , et al. Experimental aerodynamic control of a long-span suspension bridge section using leading-and trailing-edge control surfaces. IEEE Transactions on Control Systems Technology, 2016,24(4):1441-1453
    [27] 高逦, 孙鹏, 矫丽颖 等. 高超声速飞行器机翼颤振主动控制系统. 西北工业大学学报, 2017,35(5):793-797
    [27] ( Gao Li, Sun Peng, Jiao Liying , et al. Adaptive control of a shape memory spring actuation for twist wing. Journal of Northwestern Polytechnical University, 2017,35(5):793-797 (in Chinese))
    [28] Bera KK, Chandiramani NK . Bridge deck flutter control using winglets and static output feedback. Journal of Dynamic Systems Measurement & Control, 2018,140(8):1-13
    [29] Raveh DE, Iovnovich M, Nahom T . Wind-tunnel study of the arma flutter prediction method//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018
    [30] He S, Jonsson E, Mader CA , et al. A coupled newton-krylov time spectral solver for flutter prediction//AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2018
    [31] Opgenoord MMJ, Drela M, Willcox KE . Physics-based low-order model for transonic flutter prediction. AIAA Journal, 2018,56(4):1-13
    [32] Tang W, Wu J, Shi ZK . Identification of reduced-order model for an aeroelastic system from flutter test data. Chinese Journal of Aeronautics, 2017,30(1):337-347
    [33] Visser M, Navalkar ST, Wingerden JWV . LPV model identification for flutter prediction: A comparison of methods. IFAC Papersonline, 2015,48(26):121-126
    [34] Rodden WP, Giesing JP, Kalman TP . Refinement of the nonplanar aspects of the subsonic doublet-lattice lifting surface method. Journal of Aircraft, 1972,9(1):69-73
    [35] 赵永辉 . 气动弹性力学与控制. 北京: 科学出版社, 2007
    [35] ( Zhao Yonghui. Aeroelastic Mechanics and Control. Beijing: Science Press, 2007 (in Chinese))
    [36] Strang G. Linear Algebra and Its Applications. Academic Press, 1976
  • 期刊类型引用(3)

    1. 张桂玮,刘召庆,朱镭,张衡,田玮,李伟光,杨智春. 地面颤振模拟试验技术研究进展. 航空学报. 2024(10): 21-39 . 百度学术
    2. 李欢庆,陈龑斌,王东. 基于MFC驱动器的飞机翼面结构参数控制设计. 机械与电子. 2022(11): 20-24 . 百度学术
    3. 张家铭,杨执钧,黄锐. 基于非线性状态空间辨识的气动弹性模型降阶. 力学学报. 2020(01): 150-161 . 本站查看

    其他类型引用(4)

计量
  • 文章访问数:  1451
  • HTML全文浏览量:  179
  • PDF下载量:  360
  • 被引次数: 7
出版历程
  • 收稿日期:  2018-08-07
  • 刊出日期:  2019-03-17

目录

    /

    返回文章
    返回