EI、Scopus 收录
中文核心期刊

基于非关联流动规律的Gotoh屈服准则的参数确定方法

王海波, 周伟, 阎昱, 李强, 何东

王海波, 周伟, 阎昱, 李强, 何东. 基于非关联流动规律的Gotoh屈服准则的参数确定方法[J]. 力学学报, 2018, 50(5): 1051-1062. DOI: 10.6052/0459-1879-18-194
引用本文: 王海波, 周伟, 阎昱, 李强, 何东. 基于非关联流动规律的Gotoh屈服准则的参数确定方法[J]. 力学学报, 2018, 50(5): 1051-1062. DOI: 10.6052/0459-1879-18-194
Wang Haibo, Zhou Wei, Yan Yu, Li Qiang, He Dong. PARAMETER DETERMINATION METHOD OF GOTOH YIELD CRITERION BASED ON NON-ASSOCIATED FLOW RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1051-1062. DOI: 10.6052/0459-1879-18-194
Citation: Wang Haibo, Zhou Wei, Yan Yu, Li Qiang, He Dong. PARAMETER DETERMINATION METHOD OF GOTOH YIELD CRITERION BASED ON NON-ASSOCIATED FLOW RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1051-1062. DOI: 10.6052/0459-1879-18-194
王海波, 周伟, 阎昱, 李强, 何东. 基于非关联流动规律的Gotoh屈服准则的参数确定方法[J]. 力学学报, 2018, 50(5): 1051-1062. CSTR: 32045.14.0459-1879-18-194
引用本文: 王海波, 周伟, 阎昱, 李强, 何东. 基于非关联流动规律的Gotoh屈服准则的参数确定方法[J]. 力学学报, 2018, 50(5): 1051-1062. CSTR: 32045.14.0459-1879-18-194
Wang Haibo, Zhou Wei, Yan Yu, Li Qiang, He Dong. PARAMETER DETERMINATION METHOD OF GOTOH YIELD CRITERION BASED ON NON-ASSOCIATED FLOW RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1051-1062. CSTR: 32045.14.0459-1879-18-194
Citation: Wang Haibo, Zhou Wei, Yan Yu, Li Qiang, He Dong. PARAMETER DETERMINATION METHOD OF GOTOH YIELD CRITERION BASED ON NON-ASSOCIATED FLOW RULE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(5): 1051-1062. CSTR: 32045.14.0459-1879-18-194

基于非关联流动规律的Gotoh屈服准则的参数确定方法

基金项目: 1) 国家自然科学基金项目(51475003), 北京市教委青年拔尖人才培育计划项目, 北方工业大学毓优人才、毓杰人才支持计划项目(718XN154-007)资助.
详细信息
    作者简介:

    2) 王海波, 副教授, 主要研究方向: 塑性成形理论、工艺与数值模拟. E-mail: wanghaibo@ncut.edu.cn

    通讯作者:

    王海波

  • 中图分类号: TG301;

PARAMETER DETERMINATION METHOD OF GOTOH YIELD CRITERION BASED ON NON-ASSOCIATED FLOW RULE

  • 摘要: 屈服准则对板料成形过程的理论解析、工艺优化和有限元模拟有着重要的影响. 通过提高屈服准则的各向异性表征能力, 可以确保成形过程的可靠性及实际预测的准确性. 本文基于非关联流动法则, 给出了Gotoh屈服准则一套全新的参数求解方法. 在结合常用屈服准则并考虑流动规律的基础上, 分别以5754O铝合金、DP980先进高强钢和SAPH440结构钢作为研究对象, 进行了不同加载路径下各向异性变形行为的预测. 根据Gotoh屈服准则推导的屈服函数、塑性势函数以及基于关联流动的理论函数计算出屈服应力和各向异性指数$r$值随加载角度的分布趋势, 进而针对平面应力状态的屈服轨迹展开分析, 验证了不同屈服准则和流动规律对各向异性屈服行为的预测精度. 理论与实验数据对比结果表明: 不同屈服准则针对同种板料在流动规律一致的情形下其表征各向异性的能力有显著差异; 相同屈服准则基于不同流动规律其表征能力也具有明显差别. 基于非关联流动的屈服准则能极大地提高精度, 各向异性表征能力显著加强. 相关结果能够为各向异性屈服准则在塑性成形领域的实际应用方案提供重要参考.
    Abstract: Yield criterion has an important influence on theoretical analysis, process optimization and finite element simulation of sheet metal forming process. By enhancing the anisotropy characterization ability of the yield criterion, the reliability of the forming process and the accuracy of the actual prediction can be ensured. In this paper, a new set of parameter solving method for the Gotoh yield criterion is given based on non-associated flow rule. On the basis of common yield criteria and different flow rules, the 5754O aluminum alloy, DP980 advanced high-strength steel and SAPH440 structural steel sheet were taken as examples, the anisotropic deformation behavior of which were predicted under different loading paths. The yield function and plastic potential function derived from Gotoh yield criterion and the theoretical functions based on associated flow rule were used to calculate the distributions trend of yield stress and r-value along different loading angle. Furthermore, the yield locus under the plane stress state is analyzed, and the prediction accuracy the anisotropic yield behavior based on different yield criteria and the flow rules is verified. By comparing the theoretical and experimental results, it is shown that different yield criteria with same flow rule have significant differences in anisotropic characterization ability for the same sheet. There are also obvious deviations in the characterization process when the yield criterion is adopted based on different flow rules. The yield criterion based on non-associated flow rule can greatly improve its own flexibility and accuracy, and the characterization ability is significantly enhanced. The final results will provide an important reference for the actual application strategy of the yield criteria in the plastic forming field.
  • [1] 王仲仁, 胡卫龙, 胡蓝. 屈服准则与塑性应力-应变关系理论及应用. 北京: 高等教育出版社, 2014
    [1] (Wang Zhongren, Hu Weilong, Hu Lan.Yield Criteria and Plastic Stress-Strain Relations Theory and Application. Beijing: Higher Education Press, 2014 (in Chinese))
    [2] 张飞飞, 陈劼实, 陈军等. 各向异性屈服准则的发展及实验验证综述. 力学进展, 2012, 42(1): 68-80
    [2] (Zhang Feifei, Chen Jieshi, Chen Jun, et al.Review on development and experimental validation for anisotropic yield criterions. Advances in Mechanics, 2012, 42(1): 68-80 (in Chinese))
    [3] 史艳莉, 吴建军. 各向异性屈服准则的发展及应用. 锻压技术, 2006, 31(1): 99-103
    [3] (Shi Yanli, Wu Jianjun.Development and application of anisotropic yield criterion. Forging Technology, 2006, 31(1): 99-103 (in Chinese))
    [4] Hill R.塑性数学理论. 北京: 科学出版社, 1966
    [4] (Hill R.Mathematic Theory of Plasticity. Beijing: Science Press, 1996 (in Chinese))
    [5] Hill R.Theoretical plasticity of textured aggregates. Mathematical Proceeding Cambridge Philosophical Society, 1979, 85(1): 179-191
    [6] Hill R.Constitutive modeling of orthotropic plasticity in sheet metals. Journal of Mechanics and Physics of Solids, 1990, 38(3): 405-417
    [7] Hill R.A user-friendly theory of orthotropic plasticity in sheet metals. International Journal of Mechanical Sciences, 1993, 35(1): 19-25
    [8] Barlat F, Lian J.Plastic behavior and stretch ability of sheet metals, Part I: A yield function for orthotropic sheet under plane stress conditions. International Journal of Plasticity, 1989, 5(1): 51-66
    [9] Barlat F, Maedy Y, Chung K, et al.Yield function development for aluminum alloy sheets. Journal of Mechanics and Physics of Solids, 1997, 45(11-12): 1727-1763
    [10] Barlat F, Brem JC, Yoon JW, et al.Plane stress yield function for aluminum alloy sheets-part I: Theory. International Journal of Plasticity, 2003, 19: 1297-1319
    [11] Gotoh M.A theory of plastic anisotropy based on a yield function of fourth order (plane stress state). International Journal of Mechanical Sciences, 1977, 19(9): 505-512
    [12] Montheillet F, Jonas J, Benferrah M.Development of anisotropy during the cold rolling of aluminum sheet. International Journal of Mechanical Sciences, 1991, 33(3): 197-209
    [13] Banabic D, Aretz H, Comsa DS, et al.An improved analytical description of orthotropy in metallic sheets. International Journal of Plasticity, 2005, 21: 493-512
    [14] 吴向东. 不同加载路径下各向异性板料塑性变形行为的研究. [博士论文]. 北京: 北京航空航天大学, 2004
    [14] (Wu Xiangdong.Research on the plastic deformation behavior of anisotropic sheet metal under different loading paths. [PhD Thesis]. Beijing: BeiHang University, 2004 (in Chinese))
    [15] Hu WL.Characterized behaviors and corresponding yield criterion of anisotropic sheet metals. Materials Science and Engineering A, 2003, 345(1-2): 139-144
    [16] Hill R.Constitutive dual potentials in classical plasticity. Journal of Mechanics and Physics of Solids, 1987, 35: 23-33
    [17] Barlat F, Chung K.Anisotropic potentials for plastically deforming metals. Modelling and Simulation in Materials Science and Engineering, 1993, 1(4): 403-416
    [18] Barlat F, Chung K, Richmond O.Strain rate potential for metals and its application to minimum plastic work path calculations. International Journal of Plasticity, 1993, 9: 51-63
    [19] Kim D, Barlat F, Bouvier S, et al.Nonquadratic anisotropic potentials based on linear transformation of plastic strain rate. International Journal of Plasticity, 2007, 23: 1380-1399
    [20] Lademo OG, Hopperstad OS, Langseth M.An evaluation of yield criteria and flow rules for aluminum alloys. International Journal of Plasticity, 1999, 15: 191-208
    [21] Stoughton TB.A non-associated flow rule for sheet metal forming. International Journal of Plasticity, 2002, 18: 687-714
    [22] Cvitanic V, Vlak F, Lozina Z.A finite element formulation based on non-associated plasticity for sheet metal forming. International Journal of Plasticity, 2008, 24: 646-687
    [23] Min JY, Carsley JE, Lin JP.A non-quadratic constitutive model under non-associated flow rule of sheet metals with anisotropic hardening: modeling and experimental validation. International Journal of Mechanical Sciences, 2016, 119: 343-359
    [24] Lee EH, Stoughton TB, Yoon JW.A yield criterion through coupling of quadratic and non-quadratic functions for anisotropic hardening with non-associated flow rule. International Journal of Plasticity, 2017, 99: 120-143
    [25] Hu Q, Li XF, Chen J.On the calculation of plastic strain by simple method under non-associated flow rule. European Journal of Mechanics A/Solids, 2018, 67: 45-57
    [26] Park T, Chung K.Non-associated flow rule with symmetric stiffness modulus for isotropic-kinematic hardening and its application for earing in circular cup drawing. International Journal of Solids and Structures, 2012, 49: 3582-3593
    [27] Cvitanic V, Kovacic M.Algorithmic formulations of evolutionary anisotropic plasticity models based on non-associated flow rule. Latin American Journal of Solids and Structures, 2017, 14(10): 1853-1871
    [28] Zhang SJ, Lou YS, Yoon JW.Finite element formulation of a general asymmetrical yield function for pressure sensitive metals. Procedia Engineering, 2017, 207: 215-220
    [29] Qian LY, Fang G, Zeng P.Modeling of the ductile fracture during the sheet forming of aluminum alloy considering non-associated constitutive characteristic. International Journal of Mechanical Sciences, 2017, 126: 55-66
    [30] Lou YS, Yoon JW.Anisotropic yield function based on stress invariants for BCC and FCC metals and its extension to ductile fracture criterion. International Journal of Plasticity, 2018, 101: 125-155
    [31] Ahn K, Seo MH.Effect of anisotropy and differential work hardening on the failure prediction of AZ31B magnesium sheet at room temperature. International Journal of Solids and Structures, 2018, 138: 181-192
    [32] Lian JH, Shen FH, Jia XX, et al.An evolving non-associated Hill48 plasticity model accounting for anisotropic hardening and r-value evolution and its application to forming limit prediction. International Journal of Solids and Structures, 2017,
    [33] Soare S, Yoon JW, Cazacu O.On the use of homogeneous polynomials to develop anisotropic yield functions with applications to sheet forming. International Journal of Plasticity, 2008, 24: 915-944
    [34] 戴宏亮. 弹塑性力学. 长沙: 湖南大学出版社, 2016
    [34] (Dai Hongliang.Elasticity and Plasticity. Changsha: Hunan University Press, 2016 (in Chinese))
    [35] 宋礼民. 多元函数凹凸性的定义和判别法. 高等数学研究, 2014, 17(4): 1008-1399
    [35] (Song Limin.Definition and criterion of convexity of multivariate functions. Advanced Mathematics, 2014, 17(4): 1008-1399 (in Chinese))
    [36] 王海波, 万敏, 阎昱等. 参数求解方法对屈服准则的各向异性行为描述能力的影响.机械工程学报, 2013,19(11): 1-9
    [36] (Wang Haibo, Wan Min, Yan Yu, et al.The effect of parameter method on describing yield ability anisotropic behavior. Journal of Mechanical Engineering, 2013, 19(11): 1-9 (in Chinese))
    [37] Kuwabara T, Hakoyama T, Maeda T, et al.Hole expansion of a high strength steel sheet. . 2017-10-2
    [38] Cai ZY, Diao KS, Wu XD, et al.Constitutive modeling of evolving plasticity in high strength steel sheets. International Journal of Mechanical Sciences, 2016, 107: 43-57
    [39] Inoue T, Takizawa H, Kuwabara T, et al.Cup drawing of anisotropic thick steel sheet. . 2017-10-2
  • 期刊类型引用(6)

    1. 都凯,任彦强,侯勇,李小强,陈帅峰,孙亮,左晓姣,袁晓光. 精确预测近平面应变载荷下各向异性行为的屈服准则参数识别策略. 中国机械工程. 2023(19): 2381-2393 . 百度学术
    2. 王海波,肖旭,阎昱,李强,何东. 流动法则和屈服准则对板料成形极限预测的影响. 塑性工程学报. 2022(03): 157-165 . 百度学术
    3. 方刚,陈祝,雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用. 塑性工程学报. 2021(06): 8-18 . 百度学术
    4. 贾然,赵桂平. 泡沫铝本构行为研究进展. 力学学报. 2020(03): 603-622 . 本站查看
    5. 陶文斌,陈铁林,张群,王泽军,王荣鑫. 考虑非均匀应力场巷道弹塑性分区的锚杆力学分析. 吉林大学学报(工学版). 2020(06): 2131-2140 . 百度学术
    6. Haibo Wang,Mingliang Men,Yu Yan,Min Wan,Qiang Li. Prediction of Eight Earings in Deep Drawing of 5754O Aluminum Alloy Sheet. Chinese Journal of Mechanical Engineering. 2019(05): 146-154 . 必应学术

    其他类型引用(5)

计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 11
出版历程
  • 收稿日期:  2018-06-07
  • 刊出日期:  2018-09-17

目录

    /

    返回文章
    返回