EI、Scopus 收录
中文核心期刊

近场动力学与有限元方法耦合求解热传导问题

刘硕, 方国东, 王兵, 付茂青, 梁军

刘硕, 方国东, 王兵, 付茂青, 梁军. 近场动力学与有限元方法耦合求解热传导问题[J]. 力学学报, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
引用本文: 刘硕, 方国东, 王兵, 付茂青, 梁军. 近场动力学与有限元方法耦合求解热传导问题[J]. 力学学报, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
Citation: Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. DOI: 10.6052/0459-1879-17-332
刘硕, 方国东, 王兵, 付茂青, 梁军. 近场动力学与有限元方法耦合求解热传导问题[J]. 力学学报, 2018, 50(2): 339-348. CSTR: 32045.14.0459-1879-17-332
引用本文: 刘硕, 方国东, 王兵, 付茂青, 梁军. 近场动力学与有限元方法耦合求解热传导问题[J]. 力学学报, 2018, 50(2): 339-348. CSTR: 32045.14.0459-1879-17-332
Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. CSTR: 32045.14.0459-1879-17-332
Citation: Liu Shuo, Fang Guodong, Wang Bing, Fu Maoqing, Liang Jun. STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 339-348. CSTR: 32045.14.0459-1879-17-332

近场动力学与有限元方法耦合求解热传导问题

基金项目: 国家自然科学基金资助项目(11672089,11732002,11325210,11421091).
详细信息
    通讯作者:

    方国东,梁军

    方国东,梁军

  • 中图分类号: O34;

STUDY OF THERMAL CONDUCTION PROBLEM USING COUPLED PERIDYNAMICS AND FINITE ELEMENT METHOD

  • 摘要: 求解含裂纹等不连续问题一直是计算力学的重点研究课题之一,以偏微分方程为基础的连续介质力学方法处理不连续问题时面临很大的困难. 近场动力学方法是一种基于积分方程的非局部理论,在处理不连续问题时有很大的优越性. 本文提出了求解含裂纹热传导问题的一种新的近场动力学与有限元法的耦合方法. 结合近场动力学方法处理不连续问题的优势以及有限元方法计算效率高的优势,将求解区域划分为两个区域,近场动力学区域和有限元区域. 包含裂纹的区域采用近场动力学方法建模,其他区域采用有限元方法建模. 本文提出的耦合方案实施简单方便,近场动力学区域与有限元区域之间不需要设置重叠区域. 耦合方法通过近场动力学粒子与其域内所有粒子(包括近场动力学粒子和有限元节点)以非局部方式连接,有限元节点与其周围的所有粒子以有限元方式相互作用. 将有限元热传导矩阵和近场动力学粒子相互作用矩阵写入同一整体热传导矩阵中,并采用Guyan缩聚法进一步减小计算量. 分别采用连续介质力学方法和近场动力学方法对一维以及二维温度场算例进行模拟,结果表明,本文的耦合方法具有较高的计算精度和计算效率. 该耦合方案可以进一步拓展到热力耦合条件下含裂纹材料和结构的裂纹扩展问题.
    Abstract: To accurately model discontinuous problems with cracks is one important topic in computational mechanics. It is very difficult to solve discontinuous problems using continuum mechanics methods based on partial differential equations. However, peridynamics (PD), a non-local theory based on integral equations, has great advantages in solving these problems. In this paper, a new method is proposed to solve heat conduction problems with cracks using coupled PD and finite element method (FEM). This method has both the advantage of the computational efficiency of FEM and the advantage of PD in solving discontinuous problems. The computational domain can be partitioned into two regions, PD region and FEM region. The region containing the crack is modeled by PD, and the other region is modeled by FEM. Application of the coupling scheme proposed in this paper is simple and convenient, since there is no need to introduce an overlapping region between PD region and FEM region. As for the coupling approach, the PD particle is connected non-locally to all particles (PD particles and finite element nodes) within its horizon, whereas the finite element node interacts with other nodes in the finite element manner. The heat conduction matrices of FEM and the matrices of the interaction between PD particles are combined to be a global heat conduction matrix. The Guyan reduction method is used to further reduce the computational cost. The temperature fields of a one-dimensional bar and a two-dimensional plate obtained by the coupling approach are compared with classical solutions. Results show that the proposed coupling method is accurate and efficient. The coupling scheme can be extended to solve crack propagation problems with the thermo-mechanical load.
  • [1] 马天宝,任会兰,李健等. 爆炸与冲击问题的大规模高精度计算. 力学学报, 2016, 48(3): 599-608
    [1] (Ma Tianbao, Ren Huilan, Li Jian, et al.Large scale high precision computation for explosion and impact problems.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(3): 599-608 (in Chinese))
    [2] 吕海宝, 梁军, 郭旭等. 第七届全国固体力学青年学者学术研讨会报告综述. 力学学报, 2017, 49(1): 223-230
    [2] (Lü Haibao, Liang Jun, Guo Xu, et al.Review of the seventh national symposium on solid mechanics for young scholars.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 223-230 (in Chinese))
    [3] 孙可明, 张树翠. 含层理页岩气藏水力压裂裂纹扩展规律解析分析. 力学学报, 2016, 48(5): 1229-1237
    [3] (Sun Keming, Zhang Shucui.Hydraulic fracture propagation in shale gas bedding reservoir analytical analysis.Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1229-1237 (in Chinese))
    [4] 路德春,李萌,王国盛等. 静动组合载荷下混凝土率效应机理及强度准则. 力学学报, 2017, 49(4): 940-952
    [4] (Lu Dechun, Li Meng, Wang Guosheng, et al.Study on strain rate effect and strength criterion of concrete under static-dynamic coupled loading.Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 940-952 (in Chinese))
    [5] Silling SA, Lehoucq RB.Peridynamic theory of solid mechanics.Advances in Applied Mechanics, 2010, 44: 73-168
    [6] Silling SA.Origin and effect of nonlocality in a composite.Journal of Mechanics of Materials and Structures, 2014, 9(2): 245-258
    [7] Gu X, Zhang Q, Huang D, et al.Wave dispersion analysis and simulation method for concrete SHPB test in peridynamics.Engineering Fracture Mechanics, 2016, 160: 124-137
    [8] Madenci E, Oterkus E.Peridynamic Theory and Its Application. New York: Springer, 2014: 203-244
    [9] 章青, 顾鑫, 郁杨天. 冲击载荷作用下颗粒材料动态力学响应的近场动力学模拟. 力学学报, 2016, 48(1): 56-63
    [9] (Zhang Qing, Gu Xin, Yu Yangtian.Peridynamics simulation for dynamic response of granular materials under impact loading,Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(1): 56-63 (in Chinese))
    [10] 黄丹, 章青, 乔丕忠等. 近场动力学方法及其应用. 力学进展, 2010, 40(4): 448-459
    [10] (Huang Dan, Zhang Qing, Qiao Pizhong, et al.A review on peridynamics method and its application.Advance in Mechanics, 2010, 40(4): 448-459 (in Chinese))
    [11] 胡祎乐, 余音, 汪海. 基于近场动力学理论的层压板损伤分析方法. 力学学报, 2013, 45(4): 624-628
    [11] (Hu Yile, Yu Yin, Wang Hai.Damage analysis method for laminates based on peridynamic theory.Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 624-628 (in Chinese))
    [12] Hu YL, Madenci E.Peridynamics for fatigue life and residual strength prediction of composite laminate.Composite Structures, 2017, 160: 169-184
    [13] Hu YL, De Carvalho NV, Madenci E.Peridynamic modeling of delamination growth in composite laminates.Composite Structures, 2015, 132: 610-620
    [14] Chen Z, Bakenhus D, Bobaru F.A constructive peridynamic kernel for elasticity.Computer Methods in Applied Mechanics and Engineering, 2016, 311: 356-373
    [15] Yaghoobi A, Chorzepa MG.Meshless modeling framework for fiber reinforced concrete structures.Computers & Structures, 2015, 161: 43-54
    [16] Macek RW, Silling SA.Peridynamics via finite element analysis.Finite Elements in Analysis and Design, 2007, 43(15): 1169-1178
    [17] Kilic B, Madenci E.Coupling of peridynamic theory and the finite element method.Journal of Mechanics of Materials and Structures, 2010, 5(5): 707-733
    [18] Liu W, Hong JW.A coupling approach of discretized peridynamics with finite element method.Computer Methods in Applied Mechanics and Engineering, 2012, 245: 163-175
    [19] Galvanetto U, Mudric T, Shojaei A, et al.An effective way to couple FEM meshes and peridynamics grids for the solution of static equilibrium problems.Mechanics Research Communications, 2016, 76: 41-47
    [20] Seleson P, Beneddine S, Prudhomme S.A force-based coupling scheme for peridynamics and classical elasticity.Computational Materials Science, 2013, 66: 34-49
    [21] Lubineau G, Azdoud Y, Han F, et al.A morphing strategy to couple non-local to local continuum mechanics.Journal of the Mechanics and Physics of Solids, 2012, 60(6): 1088-1102
    [22] Azdoud Y, Han F, Lubineau G.A morphing framework to couple non-local and local anisotropic continua.International Journal of Solids and Structures, 2013, 50(9): 1332-1341
    [23] Han F, Lubineau G, Azdoud Y, et al.A morphing approach to couple state-based peridynamics with classical continuum mechanics.Computer Methods in Applied Mechanics and Engineering, 2016, 301: 336-358
    [24] Shojaei A, Mudric T, Zaccariotto M, et al.A coupled meshless finite point/Peridynamic method for 2D dynamic fracture analysis.International Journal of Mechanical Sciences, 2016, 119: 419-431
    [25] Bie YH, Cui XY, Li ZC.A coupling approach of state-based peridynamics with node-based smoothed finite element method.Computer Methods in Applied Mechanics and Engineering, 2018, 331: 675-700
    [26] Bobaru F, Duangpanya M.The peridynamic formulation for transient heat conduction.International Journal of Heat and Mass Transfer, 2010, 53(19): 4047-4059
    [27] Bobaru F, Duangpanya M.A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities.Journal of Computational Physics, 2012, 231(7): 2764-2785
    [28] Oterkus S, Madenci E, Agwai A.Peridynamic thermal diffusion.Journal of Computational Physics, 2014, 265: 71-96
    [29] Chen Z, Bobaru F.Selecting the kernel in a peridynamic formulation: A study for transient heat diffusion.Computer Physics Communications, 2015, 197: 51-60
    [30] 王飞, 马玉娥, 郭妍宁. 近场动力学中内核参数对非均匀材料热传导数值解的影响研究. 西北工业大学学报, 2017, 35(2): 203-207
    [30] (Wang Fei, Ma Yu’e, Guo Yanning.Effects of kernel parameters of peridynamic theory on heat conduction numerical solution for non-homogeneous material.Journal of Northwestern Polytechnical University, 2017, 35(2): 203-207 (in Chinese))
    [31] Silling SA.Reformulation of elasticity theory for discontinuities and long-range forces.Journal of the Mechanics and Physics of Solids, 2000, 48(1): 175-209
    [32] Cheng Z, Zhang G, Wang Y, et al.A peridynamic model for dynamic fracture in functionally graded materials.Composite Structures, 2015, 133: 529-546
    [33] 孔祥谦. 热应力有限单元法分析. 上海:上海交通大学出版社, 1999: 136-139
    [33] (Kong Xiangqian.Analysis of thermal stress finite element method. Shanghai: Shanghai Jiao Tong University Press, 1999: 136-139 (in Chinese))
    [34] 邱吉宝, 向树红, 张正平. 计算结构动力学. 合肥:中国科学技术大学出版社, 2009: 352-354
    [34] (Qiu Jibao, Xiang Shuhong, Zhang Zhengping. Computational Structure Dynamics.Hefei: University of Science and Technology of China Press, 2009: 352-354 (in Chinese))
    [35] Ha YD, Bobaru F.Studies of dynamic crack propagation and crack branching with peridynamics.International Journal of Fracture, 2010, 162(1): 229-244
  • 期刊类型引用(17)

    1. 程自然,王宇,高剑,黄守道,阮琳. 计及电磁-传热影响的蒸发冷却风力发电机定子铁心穿管结构优化设计. 电工技术学报. 2024(06): 1684-1697 . 百度学术
    2. 杨凯亮,李怀学. 高斯移动热源作用下的选区激光熔化近场动力学模型. 中国激光. 2024(16): 186-198 . 百度学术
    3. 韩笑. 基于高阶块体元-有限元建模的混凝土细观数值分析. 粉煤灰综合利用. 2021(03): 56-63 . 百度学术
    4. 季奕,邢誉峰. 一种求解瞬态热传导方程的无条件稳定方法. 力学学报. 2021(07): 1951-1961 . 本站查看
    5. 肖晓芳. 边界元法在船-桥墩碰撞过程的有限元分析. 舰船科学技术. 2021(16): 25-27 . 百度学术
    6. 朱强华,杨恺,梁钰,高效伟. 基于特征正交分解的一类瞬态非线性热传导问题的新型快速分析方法. 力学学报. 2020(01): 124-138 . 本站查看
    7. 肖国峰. 具有稳定数值解的三维谐振子. 计算力学学报. 2020(01): 119-130 . 百度学术
    8. 王磊磊,纪乐,马文涛. FGMs稳态热传导分析的重心Lagrange插值配点法. 计算物理. 2020(02): 173-181 . 百度学术
    9. 熊春宝,胡倩倩,郭颖. 孔隙率各向异性下饱和多孔弹性地基动力响应. 力学学报. 2020(04): 1120-1130 . 本站查看
    10. 伏培林,丁立,赵吉中,张旭,阚前华,王平. 考虑材料温度相关性的二维轮轨弹塑性滑动接触温升分析. 力学学报. 2020(05): 1245-1254 . 本站查看
    11. 王林娟,徐吉峰,王建祥. 非局部弹性理论概述及在当代材料背景下的一些进展. 力学季刊. 2019(01): 1-12 . 百度学术
    12. 顾鑫,章青,Erdogan Madenci. 多物理场耦合作用分析的近场动力学理论与方法. 力学进展. 2019(00): 576-598 . 百度学术
    13. 杨秋足,徐绯,王璐,杨扬. 一种基于黎曼解处理大密度比多相流SPH的改进算法. 力学学报. 2019(03): 730-742 . 本站查看
    14. 徐建于,黄生洪. 圆柱形汇聚激波诱导Richtmyer-Meshkov不稳定的SPH模拟. 力学学报. 2019(04): 998-1011 . 本站查看
    15. 刘硕,方国东,付茂青,王兵,梁军. 近场动力学与有限元方法耦合求解复合材料损伤问题. 中国科学:技术科学. 2019(10): 1215-1222 . 百度学术
    16. 王飞,马玉娥,郭妍宁,黄玮. 基于近场动力学理论的功能梯度材料瞬态热响应研究. 西北工业大学学报. 2019(05): 903-908 . 百度学术
    17. 李珺璞,陈文. 一种模拟大规模高频声场的双层奇异边界法. 力学学报. 2018(04): 961-969 . 本站查看

    其他类型引用(8)

计量
  • 文章访问数:  1927
  • HTML全文浏览量:  237
  • PDF下载量:  539
  • 被引次数: 25
出版历程
  • 收稿日期:  2017-10-08
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回