EI、Scopus 收录
中文核心期刊

高超声速激波湍流边界层干扰直接数值模拟研究

童福林, 李欣, 于长, 李新

童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
引用本文: 童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
Citation: Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. DOI: 10.6052/0459-1879-17-239
童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. CSTR: 32045.14.0459-1879-17-239
引用本文: 童福林, 李欣, 于长, 李新. 高超声速激波湍流边界层干扰直接数值模拟研究[J]. 力学学报, 2018, 50(2): 197-208. CSTR: 32045.14.0459-1879-17-239
Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. CSTR: 32045.14.0459-1879-17-239
Citation: Tong Fulin, Li Xin, Yu Changping, Li Xinliang. DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(2): 197-208. CSTR: 32045.14.0459-1879-17-239

高超声速激波湍流边界层干扰直接数值模拟研究

基金项目: 国家自然科学基金(91441103, 11372330)和国家重点研发计划(2016YFA0401200)资助项目.
详细信息
    作者简介:

    null

    2)童福林,助理研究员,主要研究方向:可压缩湍流直接数值模拟. E-mail:515363491@qq.com

  • 中图分类号: V211.3,O241.3;

DIRECT NUMERICAL SIMULATION OF HYPERSONIC SHOCK WAVE AND TURBULENT BOUNDARY LAYER INTERACTIONS

  • 摘要: 高超声速激波与湍流边界层干扰会导致飞行器表面出现局部热流峰值,严重影响飞行器气动性能和飞行安全. 针对高马赫数激波干扰问题,以往数值研究多采用雷诺平均方法,而在直接数值模拟方面的相关工作较为少见. 开展高超声速激波与湍流边界层干扰的直接数值模拟研究,有助于进一步提升对其复杂流动机理认识和理解,同时也将为现有湍流模型和亚格子应力模型的改进提供理论依据. 采用直接数值模拟方法对来流马赫数6.0,34°压缩拐角内激波与湍流边界层的干扰问题进行了研究. 基于雷诺应力各向异性张量,分析了高超声速湍流边界层在压缩拐角内的演化特性. 通过对湍动能输运方程的逐项分析,系统地研究了可压缩效应对湍动能及其输运的影响机制. 采用动态模态分解方法,探讨了干扰流场的非定常运动历程. 研究结果表明,随着湍流边界层往下游发展,近壁湍流的雷诺应力状态由两组元轴对称状态逐渐演化为两组元状态,外层区域则由轴对称膨胀趋近于各向同性. 干扰流场内存在强内在压缩性效应(声效应),其对湍动能输运的影响主要体现在压力--膨胀项,而对膨胀--耗散项影响较小. 高超声速下压缩拐角内的非定常运动仍存在以分离泡膨胀/收缩为特征的低频振荡特性,其物理机制与分离泡剪切层密切相关.
    Abstract: The peak of local thermal load might be severe due to the interactions of hypersonic shock wave and turbulent boundary layer. It has significant effect on the aerodynamic performance and flight safety of vehicle. Most previous studies on the interaction in hypersonic condition were based on the Reynolds-averaged methods, the corresponding direct numerical simulation is relatively scarce. The direct numerical analysis of hypersonic shock wave and turbulent boundary layer interaction are helpful to the understanding of the relevant mechanisms and the improvement of existing turbulent modes and sub-grid stress models. Numerical analysis of hypersonic shock wave and turbulent boundary layer interactions in a 34° compression ramp are carried out by means of direct numerical simulation for a free-stream Mach number M=6.0. Based on the Reynolds stress anisotropy tensor, the evolution of turbulent boundary layer along the compression ramp is analyzed. The compressibility effects on turbulent kinetic energy and its transport mechanism are studied through item by item analysis of transport equation. Using dynamic mode decomposition method, the characteristic of unsteadiness in the interaction region is investigated. It is found that along the flow developing downstream, the turbulent state in the near wall region is gradually turned into two-component turbulence from two-component axisymmetric state. The turbulence in outer region approaches the isotropic state from axisymmetric expansion. The results exhibit that there exist significant compressibility effects in the interaction region. The pressure-dilation correlation in turbulent kinetic energy budgets is enhanced significantly. However, it has little effect on the dilatational dissipation. The low-frequency oscillation in hypersonic compression ramp is characterized by the breathing motion of separation bubble. According to the spatial structure of low frequency dynamic modes, the unsteadiness is strongly associated with the separated shear layer.
  • [1] Dolling DS.Fifty years of shock-wave/boundary-layer interaction research: What next? AIAA Journal, 2001, 39(8): 1517-1530
    [2] Gaitonde DV.Progress in shock wave / boundary layer interactions. Progress in Aerospace Sciences, 2015, 72: 80-99
    [3] Edwards JR.Numerical simulations of shock/boundary layer interactions using time dependent modeling techniques: A survey of recent results. Progress in Aerospace Sciences, 2008, 44: 447-465
    [4] Knight DD.Assessment of CFD capability for prediction of hypersonic shock interactions. Progress in Aerospace Sciences, 2012, 48: 8-26
    [5] Dolling DS.High-speed turbulent separated flows: Consistency of mathematical models and flow physics. AIAA Journal, 1998, 36(5): 725-735
    [6] Pirozzoli S.Numerical methods for high-speed flows. Annual Reviews of Fluid Mechanics, 2011, 43: 163-194
    [7] 李新亮,傅德薰,马延文. 8阶群速度控制格式及其应用.力学学报, 2004, 36(1): 79-83
    [7] (Li Xinliang, Fu Dexin, Ma Yanwen.Optimized group velocity control scheme. Chinese Journal of Theoretical and Applied Mechanics, 2004, 36(1): 79-83 (in Chinese))
    [8] Loginov MS, Adams NA, Zheltovodov AA.Large-eddy simulation of shock wave turbulent boundary layer interaction. Journal of Fluid Mechanics, 2006, 565: 135-169
    [9] Adams NA.Direct simulation of the turbulent boundary layer along a compression ramp at <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml86-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>3</mml:mn></mml:math></inline-formula> and <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml87-0459-1879-50-2-197"><mml:mi>R</mml:mi><mml:msub><mml:mrow><mml:mi>e</mml:mi></mml:mrow><mml:mrow><mml:mi>θ</mml:mi></mml:mrow></mml:msub><mml:mo>=</mml:mo><mml:mn>1</mml:mn><mml:mi mathvariant="normal"> </mml:mi><mml:mn>685</mml:mn></mml:math></inline-formula>. Journal of Fluid Mechanics, 2000, 420: 47-83
    [10] Pirozzoli S, Grasso F.Direct numerical simulation of impinging shock wave turbulent boundary layer interaction at <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml88-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2006, 18: 065113
    [11] Wu M, Martin MP.Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 2007, 45(4): 879-889
    [12] Wu M, Martin MP.Analysis of shock motion in shock wave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594: 71-83
    [13] Priebe S, Wu M, Martin MP.Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1-49
    [14] Helm C, Martin MP, Dupont P.Characterization of the shear layer in a Mach 3 shock/turbulent boundary layer interaction. AIAA paper, 2014, 2014-0941
    [15] Li XL, Fu DX, Ma YW.Direct numerical simulation of shock /turbulent boundary layer interaction in a supersonic compression ramp. Science China: Physics, Mechanics & Astronomy, 2010, 53(9): 1651-1658
    [16] Fang J, Yao YF, Zheltovodov AA.Direct numerical simulation of supersonic turbulent flows around a tandem expansion-compression corner. Physics of Fluids, 2015, 27: 125104
    [17] 傅德薰, 马延文, 李新亮等.可压缩湍流直接数值模拟. 北京: 科学出版社, 2010
    [17] (Fu Dexun, Ma Yanwen, Li Xinliang, et al.Direct Numerical Simulation of Compressible Turbulence. Beijing: Science Press, 2010 (in Chinese))
    [18] 童福林,李新亮,唐志共.激波与转捩边界层干扰非定常特性数值分析.力学学报, 2017, 49(1): 93-104
    [18] (Tong Fulin, Li Xinliang, Tang Zhigong.Numerical analysis of unsteady motion in shock wave/transitional boundary layer interaction. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(1): 93-104 (in Chinese))
    [19] 李新亮,傅德薰,马延文.基于直接数值模拟的可压缩湍流模型评估和改,力学学报, 2012, 44(2): 222-229
    [19] (Li Xinliang, Fu Dexun, Ma Yanwen.Assessment of the compressible turbulence model by using the DNS data. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(2): 222-229 (in Chinese))
    [20] Pirozzoli S, Grasso F, Gatski TB.Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml89-0459-1879-50-2-197"><mml:mi>M</mml:mi><mml:mo>=</mml:mo><mml:mn>2.25</mml:mn></mml:math></inline-formula>. Physics of Fluids, 2004, 16: 530-545
    [21] Wu X, Moin P.Direct numerical simulation of turbulence in a nominally zero-pressure-gradient flat-plate boundary layer. Journal of Fluid Mechanics, 2009, 630: 5-41
    [22] Erm LP, Joubert J.Low Reynolds number turbulent boundary layers. Journal of Fluid Mechanics, 1991, 230: 1-44
    [23] Jeong J, Hussain F.On the identification of a vortex. Journal of Fluid Mechanics, 1995, 285: 69-94
    [24] Li XL, Fu DX, Ma YW.Direct numerical simulation of a spatially evolving supersonic turbulent boundary layer at <inline-formula><mml:math xmlns=" http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" target="_blank"> http://www.w3.org/1998/Math/MathML" id="Mml90-0459-1879-50-2-197"><mml:mi mathvariant="italic">Ma</mml:mi><mml:mo>=</mml:mo><mml:mn>6</mml:mn></mml:math></inline-formula>. Chinese Physics Letter, 2006, 23(6): 1519-1522
    [25] Grilli M, Hickel S, Adams NA.Large-eddy simulation of a supersonic turbulent boundary layer over a compression-expansion ramp. International Journal of Heat and Fluid Flow, 2013, 42: 79-93
    [26] Pirozzoli S, Bernardini M, Grasso F.Direct numerical simulation of transonic shock/boundary layer interaction under conditions of incipient separation. Journal of Fluid Mechanics, 2010, 657: 361-393
    [27] Pirozzoli S, Bernardini M.Direct numerical simulation database for impinging shock wave/turbulent boundary layer interaction. AIAA Journal, 2011, 49(6): 1307-1312
    [28] Clemens NT, Narayanaswamy V.Low frequency unsteadiness of shock wave turbulent boundary layer interactions. Annual Reviews of Fluid Mechanics, 2014, 46: 469-492
    [29] Schmid PJ.Dynamic mode decomposition of numerical and experimental data. Journal of Fluid Mechanics, 2010, 656: 5-28
    [30] Jovanovic MR, Schmid PJ, Nichols JW.Sparsity promoting dynamic mode decomposition. Physics of Fluids, 2014, 26(2): 024103
  • 期刊类型引用(18)

    1. 蔡琛芳,张隽研,沙心国,梁彬,袁湘江. 压缩拐角激波边界层干扰热流分布实验研究. 航天器环境工程. 2025(02): 167-173 . 百度学术
    2. 郭同彪,张吉,李新亮. 压缩拐角强激波边界层干扰直接数值模拟研究. 空天防御. 2024(02): 29-35 . 百度学术
    3. 刘晓东,刘朋欣,李辰,孙东,袁先旭. 高焓激波/湍流边界层干扰直接数值模拟. 航空学报. 2023(13): 57-72 . 百度学术
    4. 段俊亦,童福林,李新亮,刘洪伟. 压缩-膨胀湍流边界层平均摩阻分解. 航空学报. 2022(01): 71-82 . 百度学术
    5. 时文,田野,郭明明,刘源,张辰琳,钟富宇,乐嘉陵. 乙烯燃料超燃燃烧室流动特性与燃烧稳定性研究. 力学学报. 2022(03): 612-621 . 本站查看
    6. 吕金洲,李世超,张小庆,杨大伟,刘建霞,贺佳佳. 脉冲风洞天平-模型支撑一体化测力技术研究. 推进技术. 2022(10): 392-399 . 百度学术
    7. 钟巍,贾雷明,王澍霏,田宙. 一类高效率高分辨率加映射的WENO格式及其在复杂流动问题数值模拟中的应用. 力学学报. 2022(11): 3010-3031 . 本站查看
    8. 周林,沈毅,葛任伟. 可压缩流动脉动压力数值模拟求解器HFS研究. 装备环境工程. 2021(03): 23-28 . 百度学术
    9. 韦志龙,蒋勤. 基于WENO-THINC/WLIC模型的水气二相流数值模拟. 力学学报. 2021(04): 973-985 . 本站查看
    10. Yuting HONG,Zhufei LI,Jiming YANG. Scaling of interaction lengths for hypersonic shock wave/turbulent boundary layer interactions. Chinese Journal of Aeronautics. 2021(05): 504-509 . 必应学术
    11. 姚冰,郭锐. 高超音速激波边界层干扰Fluent软件数值模拟. 电脑编程技巧与维护. 2020(04): 68-69+76 . 百度学术
    12. 周志超,许凌飞,任天荣,顾村锋. 基于GCV-FFT方法的超声速压缩拐角流场气动光学效应计算. 计算物理. 2020(03): 284-298 . 百度学术
    13. 吴正园,莫凡,高振勋,蒋崇文,李椿萱. 湍流边界层与高温气体效应耦合的直接数值模拟. 空气动力学学报. 2020(06): 1111-1119+1128 . 百度学术
    14. 李益文,王宇天,庞垒,肖良华,丁志文,段朋振. 进气道等离子体/磁流体流动控制研究进展. 力学学报. 2019(02): 311-321 . 本站查看
    15. 童福林,周桂宇,周浩,张培红,李新亮. 激波/湍流边界层干扰物面剪切应力统计特性. 航空学报. 2019(05): 39-50 . 百度学术
    16. 胡晨星,杨策. 采用不同黏性处理方法的宽无叶扩压器不稳定流动研究. 力学学报. 2019(06): 1775-1784 . 本站查看
    17. 骆信,吴颂平. 改进的五阶WENO-Z+格式. 力学学报. 2019(06): 1927-1939 . 本站查看
    18. 洪正,叶正寅. 各向同性湍流通过正激波的演化特征研究. 力学学报. 2018(06): 1356-1367 . 本站查看

    其他类型引用(9)

计量
  • 文章访问数:  2831
  • HTML全文浏览量:  362
  • PDF下载量:  978
  • 被引次数: 27
出版历程
  • 收稿日期:  2017-06-28
  • 刊出日期:  2018-03-17

目录

    /

    返回文章
    返回