EI、Scopus 收录
中文核心期刊

超弹性薄膜与可压缩基底双层结构表面失稳分析

黄春阳, 唐山, 彭向和

黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析[J]. 力学学报, 2017, 49(4): 758-762. DOI: 10.6052/0459-1879-17-161
引用本文: 黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析[J]. 力学学报, 2017, 49(4): 758-762. DOI: 10.6052/0459-1879-17-161
Huang Chunyang, Tang Shan, Peng Xianghe. STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762. DOI: 10.6052/0459-1879-17-161
Citation: Huang Chunyang, Tang Shan, Peng Xianghe. STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762. DOI: 10.6052/0459-1879-17-161
黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析[J]. 力学学报, 2017, 49(4): 758-762. CSTR: 32045.14.0459-1879-17-161
引用本文: 黄春阳, 唐山, 彭向和. 超弹性薄膜与可压缩基底双层结构表面失稳分析[J]. 力学学报, 2017, 49(4): 758-762. CSTR: 32045.14.0459-1879-17-161
Huang Chunyang, Tang Shan, Peng Xianghe. STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762. CSTR: 32045.14.0459-1879-17-161
Citation: Huang Chunyang, Tang Shan, Peng Xianghe. STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2017, 49(4): 758-762. CSTR: 32045.14.0459-1879-17-161

超弹性薄膜与可压缩基底双层结构表面失稳分析

基金项目: 

国家自然科学基金资助项目 11472065

详细信息
    通讯作者:

    2) 唐山, 教授, 主要研究方向:跨尺度数值模拟与力学表征.E-mail:shan tang 0917@163.com

    3) 彭向和, 教授, 主要研究方向:跨尺度数值模拟与力学表征.E-mail:xhpeng@cqu.edu.cn

  • 中图分类号: O34

STUDY OF SURFACE INSTABILITY ABOUT HYPERELASTIC FILMS ON AUXETIC SUBSTRATES UNDER COMPRESSION

  • 摘要: 当上层超弹性硬质薄膜和下层可膨胀基底构成的双层结构受压时,薄膜的自由表面可通过形成褶皱降低系统能量.研究表明,上下两层的模量比不同时,上层弹性硬质薄膜将表现出不同的表面失稳模式.本文提出了一种新颖的方法可有效抑制双层软材料的表面失稳,即改变基底材料的泊松比,这种方法同时适用于不具有应变硬化的软材料.首先基于Neo-Hookean模型发展了小变形条件下双层结构表面失稳的理论模型,通过半解析的方法得到了表面失稳的临界应变;然后通过有限元计算与模拟,进一步验证了负泊松比基底可延缓表面失稳.结果表明:(1)当双层结构基底泊松比为正且趋于0.5(不可压缩)时,双层结构在较小的压缩应变下出现表面失稳;(2)当基底的泊松比为负且趋于-1时,可被压缩至46%而不出现表面失稳,即可膨胀基底能有效抑制薄膜的表面失稳.本文发展的方法及主要结果可为延展性电子器件的设计提供指导.
    Abstract: When a bilayer structure consisting of a thin stiff film and a thick compliant substrate subjected to compressive deformation, its free surface would be wrinkled to minimize the energy of the system, and different wrinkle patterns may appear for different ratios of the modulus of the film to that of the substrate. In this article, we developed a novel approach to suppress the surface instability of such bilayer materials under severe compression by adjusting the Poisson's ratio of the substrates. This approach is also applicable to the bilayer consisting of a soft substrate and a film with elastic modulus similar to that of the substrate. We developed an analytical approach for surface instability of the bilayer based on NeoHookean model in the case of small deformation, and obtained the critical strain of the bilayer with a semi-analytical method. Then, we used finite element approach (FEA) to illustrate that the instability of the thin film can be delayed if the substrate has a negative Poisson's ratio. We showed that:(1) when the Poisson's ratio of the substrate is positive and close to 0.5 (nearly incompressible), the surface instability may occur to the bilayer system at a very small compressive strain; (2) if the Poisson's ratio of the substrate is negative and close to -1, the film can be compressed up to 46% without occurence surface instability. The approach developed and the results obtained in this article imply a great potential of auxetic materials used to enhance the compressibility of thin films, which can provide guidance for the design of laminate ductile electronic devices.
  • Biot的线性扰动分析认为,平面应变条件下,半无限超弹性材料受压时,如果施加压缩应变达到临界值 $\varepsilon _{\rm Biot} = 0.46$ ,自由表面将丧失稳定性,形成波浪形褶皱[1].然而实验[2-4]、理论[4-7]以及计算[8-9]表明当施加压缩应变达到 $\varepsilon_{\rm crease} = 0.35$ 时,自由表面将形成折痕.超弹性块体在弯曲载荷下通常也可观察到折痕.折痕不同于褶皱,因为折痕临界应变小于褶皱临界应变 $\varepsilon _{\rm crease} < \varepsilon _{\rm Biot} $ .但是具有硬质薄膜和厚软基底构成的双层结构受到压缩时,则会出现波浪形褶皱以降低系统能量[10-11].褶皱是自由表面整体无限小扰动,而折痕则是局部大应变下的自我接触.折痕的接触区域有尖点,不同于褶皱.这些特殊表面形貌可应用到生物仿生[12]、生物淤积[13]、表面粘附[14]和细胞工程[15]等.但是表面失稳[16, 17]也会导致材料失效,比如微电子系统[18-19]和复合材料的屈曲[20-21].因此人们容易联想到的一个的问题是:如何抑制或者推迟表面失稳?

    为回答上述问题,Cao和Hutchinson[22]通过力学理论和计算研究了超弹性硬质薄膜在超弹性软基底上的双层结构在受压下的失稳[22],结果表明褶皱出现的临界应变 $\varepsilon _{\rm wrinkle} $ 取决于薄膜的杨氏模量 $E_{\rm f}$ 与基底的杨氏模量 $E_{\rm s}$ 之比 $E_{\rm f}/E_{\rm s}$ .例如 $E_{\rm f}/E_{\rm s} = 20$ 时, $\varepsilon _{\rm wrinkle} = 0.07$ [18]; $ E_{\rm f}/E_{\rm s} = 2$ 时, $\varepsilon _{\rm wrinkle} = 0.30$ ,临界应变小于 $\varepsilon _{\rm crease}$ 和 $\varepsilon _{\rm Biot}$ [22]. Feng和Tian[23],Wang和Zhao[24]详细分析了受压薄膜-基底双层结构的表面失稳.考虑了薄膜与基底的杨氏模量,界面的粘结强度、薄膜厚度和基底的预拉伸等因素对表面失稳的影响. Jin和Suo[25]最近的研究表明:材料硬化可抑制表面折痕出现.随压缩应变增大,平直表面会失稳形成折痕.随着压缩应变增大和材料应变硬化,折痕将随之消失.这种抑制表面折痕的方法很大程度上依赖材料的本构行为,不具有普遍性.

    本文提出了一种新颖的方法抑制双层软材料表面失稳,可适用于不具有应变硬化的软材料.理论分析表明,当基底为负泊松比材料时,表面失稳临界应变可被推迟到 $\varepsilon _{\rm Biot} $ .为验证理论分析的结果,建立了有限元模型,研究了受压下薄膜与基体表面失稳的形变过程.有限元分析结果表明,所提出的方法能够抑制或延缓折痕、褶皱、倍褶皱或者折叠等表面失稳模式[26-27].当基底材料为正泊松比时,没有同样的效应.因此,负泊松比基底是抑制双层软材料结构表面失稳的重要因素.

    在研究材料的表面失稳时,先前的理论[1, 4, 7, 10]和计算[8-9, 22, 24]通常假设材料为不可压缩的高分子弹性体(泊松比为0.5).但软材料或多或少具有一定的压缩性.可压缩性与温度 $T$ 及材料的微观结构有关,例如高分子聚合物在温度 $T$ 高于自身玻璃化温度 $T_{\rm g}$ 时,往往不可压缩;但是当 $T < T_{\rm g}$ 时,往往具有可压缩性. Greaves等[28]对此做了详细的综述,分子动力学模拟也证明高分子材料的泊松比与温度有关[29].对于各项同性材料,泊松比 $\nu $ 满足 $ - 1 < \nu < 0.5$ .一些研究者通过设计具有凹角或者弧形的网状结构,得到具有负泊松比性质的材料[28-32].

    图 1表示,考虑薄膜-基体双层结构.上层为硬质薄膜,下层为基底.为考虑泊松比效应,采用可压缩Neo-Hookean模型[29, 33],其自由能函数为

    图  1  薄膜-基底双层结构示意图
    Figure  1.  Schematic of a thin film-substrate bilayer
    $$ W^{\rm H} = \dfrac{\mu }{2}\left( {\overline {I_1 } - 3} \right) + K_{\rm m } \left( {J - 1} \right)^2 $$ (1)

    式中, $J = \det \left( {\pmb F} \right)$ , $\overline {\pmb F} = J^{ - \tfrac{1}{3}}{\pmb F}$ , $\overline {I_1 } = J^{ - \tfrac{2}{3}}I_1 $ , ${\pmb F}$ 为变形梯度, $I_1 $ 是左柯西-格林张量的第一不变量 ${\pmb C} = {\pmb F}^{\rm T}{\pmb F}$ . µ和 $K_{\rm m}$ 分别表示剪切模量和体积模量.以上模型中,泊松比可通过调整剪切模量和体积模量的比值决定.杨氏模量和泊松比与剪切模量和体积模量的关系见文献[34].针对可压缩超弹性体,第一Piola-Kirchhoff (PK-I)应力可由下式得出

    $$ P_{ij} = \dfrac{\partial W^{\rm H}}{\partial F_{ij} } $$ (2)

    假设上层薄膜初始厚度为 $h$ ,下层基底初始厚度为 $H$ .可压缩基底可通过微观结构设计得到[32],比如孔洞.即使存在微观结构,依然假设其为均质超弹性材料,以方便分析.薄膜和基底材料均假设为可压缩的Neo-Hookean材料.一般情况下,考虑无穷厚基底,假设 $h / H = 100$ .在下面的符号中,下角标“s”和“f”分别表示基底和薄膜.

    在大变形和平面应变条件下,一种半解析方法可用于研究多层结构的表面失稳问题.它主要包括两个分析步骤:第一步,统一施加沿 $x_1 $ 方向的预拉伸λ; 第二步,在当前构型下,施加任意波长的扰动.

    在Lagrangian构型中,增量问题通过下式描述

    $$ {\rm Div} \dot {\pmb P} = 0 $$ (3)

    式中Div表示在初始构型下的散度算子.通常在即时构型中构造失稳问题,引入变换[35]

    $$ \varSigma _{ij} = \dfrac{1}{J}\dot {P}_{ik} F_{jk} $$ (4)

    平衡方程又可以写为

    $$ {\rm div} {\pmb\varSigma} = 0 $$ (5)

    式中div表示即时构型下的散度算子.

    取以下形式的扰动

    $$ \left. {\begin{array}{*{20}{l}} {{v_1} = v_1^0\left( {{x_2}} \right)\sin \left( {K{x_1}} \right)}\\ {{v_2} = v_2^0\left( {{x_2}} \right)\cos \left( {K{x_1}} \right)} \end{array}} \right\}$$ (6)

    式中 $K$ 为波数.

    假设薄膜与基底不存在界面分离和相对滑移,即在薄膜和基底界面处[36]

    $$\left. {\begin{array}{*{20}{l}} {\left[ \mathit{\boldsymbol{v}} \right] = {\bf{0}}}\\ {\left[ {\pmb\varSigma} \right]n = {\bf{0}}} \end{array}} \right\}$$ (7)

    其中[ $\cdot $ ]表示跳跃算子,定义为

    $$ \left[f \right] = f^ + - f^ - $$ (8)

    上标“+”和“ $-$ ”表示薄膜与基体界面的上方和下方.

    在平面应变条件下,连续性条件可表示为

    $$\left. {\begin{array}{*{20}{l}} {{{\left( {v_i^0} \right)}^ + } = {{\left( {v_i^0} \right)}^ - }\;\;\left( {i = 1,2} \right)}\\ \varSigma _{22}^ + = \varSigma _{22}^ - \\ \varSigma _{12}^ + = \varSigma _{12}^ - \end{array}} \right\}$$ (9)

    表面失稳问题的边界条件为:

    上表面

    $$\left. {\begin{array}{*{20}{l}} \varSigma _{12} \vert _{x_2 = ha^i + H\lambda _2^j } = 0 \\ \varSigma _{22} \vert _{x_2 = ha^i + H\lambda _2^j } = 0 \end{array}} \right\}$$ (10)

    下表面

    $$\left. {\begin{array}{*{20}{l}} v_2^0 = 0 \\ \varSigma _{12} \vert _{x_2 = 0} = 0 \end{array}} \right\}$$ (11)

    求解平衡方程可得由待定未知系数表示的 $v_{1}$ 和 $v_{2}$ 的解.按照图 1中讨论的双层结构,连续条件和边界条件共有8个方程和8个待定未知系数.存在非平凡解的条件为8个方程的系数矩阵行列式等于零.由此可得表面失稳的临界应变.在小变形条件下,可得下式表示的表面失稳的临界应变[37]

    $$ \varepsilon ^{\rm crit} = - \dfrac{A_0^2 {\rm{ \mathsf{ π} }}2n^2}{H^2} $$ (12)

    其中, $A_{0}$ 为上层薄膜褶皱的振幅, $n$ 为褶皱的数量, $H$ 为基底厚度.

    本文考虑了两种不同的薄膜和基底模量比: $E_{\rm f}/ E_{\rm s} = 1$ 和 $ E_{\rm f}/ E_{\rm s}= 20$ .

    假设上层薄膜不可压,即 $\nu _{\rm f} = 0.5$ ,基底泊松比 $\nu_{\rm s}$ 在 $-1$ 到0.5之间变化. 图 2显示了预测的临界失稳应变和基底泊松比的关系.其中定义临界应变 $\varepsilon ^{\rm crit} = 1 - \lambda^{\rm crit}$ ,结果与Biot[1],Cao和Hutchnison[22]的结果一致.从图 2中可见,当 $ E_{\rm f}/ E_{\rm s} = 1$ ,对于不同的 $\nu_{\rm s}$ ,褶皱出现的临界应变均为0.46,与Biot基于均匀不可压超弹性材料预测结果相同[1].当 $ E_{\rm f}/ E_{\rm s} = 20$ 时,褶皱出现的临界应变随基底泊松比 $\nu_{\rm s}$ 减小而单调增加.当基底泊松比为正时,泊松比对于褶皱出现的影响可忽略;当基底的泊松比从0到 $-1$ 变化时,褶皱出现临界应变剧烈增加(从0.08增加到0.46).当 $\nu_{\rm s}$ 接近于 $-1$ 时,临界应变趋近 $\varepsilon _{\rm Biot} = 0.46$ .尽管只展示了 $ E_{\rm f}/ E_{\rm s} = 1$ 和 $ E_{\rm f}/ E_{\rm s} = 20$ 两种情形,但详尽的计算表明,使用其他模量比的结果也与此规律相符.综上所述,受压情况下,基底为负泊松比材料可有效抑制和推迟表面失稳发生,临界应变的上限 $\varepsilon _{\rm Biot} = 0.46$ .

    图  2  临界应力 $\varepsilon^{\rm crit}$ 随基底泊松比 $\nu_{\rm s}$ 的变化
    Figure  2.  Critical strain $\varepsilon^{\rm crit}$ at onset of surface wrinkles vs. Poisson's ratio of substrate $\nu_{\rm s}$

    本节将应用有限元模型进一步验证负泊松比基底可延缓表面失稳的结论.本文所有有限元计算均采用商用软件ABAQUS完成[33].基于之前的工作建立有限元模型[29, 38],与Cao和Hutchinson[22]的工作类似.有限元模型采用CPE4H单元,单元总数为20 000.分析主要分两步完成:(1) 线性扰动分析;(2) 后屈曲分析.第一步采用线性扰动分析,得出基础失稳模态;第二步引入微小缺陷(约为 $0.05h$ )乘以基础失稳模态,对初始有限元网格进行扰动,进行后屈曲分析.

    采用与前节的理论分析相同的边界条件,其他参数 $ E_{\rm f}/ E_{\rm s} = 20$ , $\nu _{\rm f} = 0.5$ . 图 3显示了不同压缩应变下双层结构表面形貌.首先讨论基底泊松比 $\nu _{\rm s} = 0.4$ 的结果.周期褶皱出现临界应变为 $\varepsilon ^{\rm crit} = 0.085$ ,如图 3(a)所示,与理论分析相一致.表面正弦褶皱的幅值逐步增大.当压缩应变接近0.18时,出现二次分岔.随着压缩应变进一步增加到0.24,倍褶皱会出现.与Cao和Hutchinson所观察到的现象相符.若基底的泊松比 $\nu _{\rm s} = - 0.9$ ,在压缩应变为0.28时,薄膜表面并没有产生褶皱或者折痕,如图 3(b)所示.当压缩应变到0.37时,表面出现很小幅值的褶皱.压缩应变0.37已经大于均匀材料中出现折痕的临界应变值 $\varepsilon _{\rm crease} = 0.35$ [4, 7].随着压缩应变增加到0.40,表面折痕会在薄膜表面形成,但其深度很小,很难用肉眼观察到.对比图 2所示的理论分析结果,可见有限元模拟结果与理论分析结果几乎一致.

    图  3  不同压缩应变下薄膜-基底结构表面形貌
    Figure  3.  Surface morphology of thin film-substrate system at different compressive strain

    目前,高分子聚合物基底被广泛用于提高金属和半导体薄膜的延展性[39-43].比如铜薄膜可在Kapton基底上达到超过50%的应变[39];银薄膜可延展至46%的应变[40].这些研究可帮助设计可延展性电子产品[42].本文提出了一种新的方法在压缩条件下抑制或者推迟双层基底与薄膜的表面失稳.负泊松比基底与超弹性薄膜构成的双层结构,上层薄膜可压缩至46%而未出现表面失稳.考虑到压缩和拉伸同等重要性,该方法为延展性电子产品设计提供了一种新思路.

  • 图  1   薄膜-基底双层结构示意图

    Figure  1.   Schematic of a thin film-substrate bilayer

    图  2   临界应力 $\varepsilon^{\rm crit}$ 随基底泊松比 $\nu_{\rm s}$ 的变化

    Figure  2.   Critical strain $\varepsilon^{\rm crit}$ at onset of surface wrinkles vs. Poisson's ratio of substrate $\nu_{\rm s}$

    图  3   不同压缩应变下薄膜-基底结构表面形貌

    Figure  3.   Surface morphology of thin film-substrate system at different compressive strain

  • [1]

    Biot MA. Surface instability of rubber in compression. Flow, Turbulence and Combustion, 1963, 12(2):168-182 https://www.researchgate.net/publication/225723619_Surface_Instability_of_Rubber_in_Compression

    [2]

    Gent AN, Cho IS. Surface instabilities in compressed or bent rubber blocks. Rubber Chemistry and Technology, 1999, 72(2):253-262 doi: 10.5254/1.3538798

    [3]

    Ghatak A, Das AL. Kink instability of a highly deformable elastic cylinder. Physical Review Letters, 2007, 99(7):076101 doi: 10.1103/PhysRevLett.99.076101

    [4]

    Hong W, Zhao X, Suo Z. Formation of creases on the surfaces of elastomers and gels. Applied Physics Letters, 2009, 95(11):111901 doi: 10.1063/1.3211917

    [5]

    Needleman A, Tvergaard V, Van der Giessen E. Indentation of elastically soft and plastically compressible solids. Acta Mechanica Sinica, 2015, 31(4):473-480 doi: 10.1007/s10409-015-0467-9

    [6]

    Huang SQ, Feng XQ. Spinodal surface instability of soft elastic thin films. Acta Mechanica Sinica, 2008, 24(3):289-296 doi: 10.1007/s10409-008-0138-1

    [7]

    Hohlfeld E, Mahadevan L. Unfolding the sulcus. Physical Review Letters, 2011, 106(10):105702 doi: 10.1103/PhysRevLett.106.105702

    [8]

    Cao Y, Hutchinson JW. From wrinkles to creases in elastomers:the instability and imperfection-sensitivity of wrinkling//Proc. R. Soc. A. The Royal Society, 2012, 468(2137):94-115

    [9]

    Wong WH, Guo TF, Zhang YW, et al. Surface instability maps for soft materials. Soft Matter, 2010, 6(22):5743-5750 doi: 10.1039/c0sm00351d

    [10]

    Mei H, Huang R, Chung JY, et al. Buckling modes of elastic thin films on elastic substrates. Applied Physics Letters, 2007, 90(15):151902 doi: 10.1063/1.2720759

    [11]

    Sun JY, Xia S, Moon MW, et al. Folding wrinkles of a thin stiff layer on a soft substrate//Proc. R. Soc. A. The Royal Society, 2012, 468(2140):932-953

    [12]

    Kim J, Yoon J, Hayward RC. Dynamic display of biomolecular patterns through an elastic creasing instability of stimuli-responsive hydrogels. Nature Materials, 2010, 9(2):159-164 doi: 10.1038/nmat2606

    [13]

    Shivapooja P, Wang Q, Örihuela B, et al. Bioinspired surfaces with dynamic topography for active control of biofouling. Advanced Materials, 2013, 25(10):1430-1434. doi: 10.1002/adma.v25.10

    [14]

    Chan EP, Karp JM, Langer RS. A "self-pinning" adhesive based on responsive surface wrinkles. Journal of Polymer Science Part B:Polymer Physics, 2011, 49(1):40-44 doi: 10.1002/polb.22165

    [15]

    Saha K, Kim J, Irwin E, et al. Surface creasing instability of soft polyacrylamide cell culture substrates. Biophysical Journal, 2010, 99(12):L94-L96 doi: 10.1016/j.bpj.2010.09.045

    [16]

    Xin F, Lu TJ. Acoustomechanical constitutive theory for soft materials. Acta Mechanica Sinica, 2016, 32(5):828-840 doi: 10.1007/s10409-016-0585-z

    [17]

    Hui CY. Crack buckling in soft gels under compression. Acta Mechanica Sinica, 2012, 28(4):1098-1105 doi: 10.1007/s10409-012-0130-7

    [18]

    Krylov S, Ilic BR, Schreiber D, et al. The pull-in behavior of electrostatically actuated bistablemicrostructures. Journal of Micromechanics and Microengineering, 2008, 18(5):055026 doi: 10.1088/0960-1317/18/5/055026

    [19]

    Li Y, Wang XS, Meng XK. Buckling behavior of metal film/substrate structure under pure bending. Applied Physics Letters, 2008, 92(13):131902 doi: 10.1063/1.2897035

    [20]

    Bolotin VV. Delaminations in composite structures:Its origin, buckling, growth and stability. Composites Part B:Engineering, 1996, 27(2):129-145 doi: 10.1016/1359-8368(95)00035-6

    [21]

    Hu Y, Hiltner A, Baer E. Buckling in elastomer/plastic/elastomer 3-layer films. Polymer Composites, 2004, 25(6):653-661 doi: 10.1002/(ISSN)1548-0569

    [22]

    Cao Y, Hutchinson JW. Wrinkling phenomena in neo-Hookean film/substrate bilayers. Journal of Applied Mechanics, 2012, 79(3):031019 doi: 10.1115/1.4005960

    [23]

    Feng PL, Lu TJ. A three-layer structure model for the effect of a soft middle layer on Love waves propagating in layered piezoelectric systems. Acta Mechanica Sinica, 2012, 28(4):1087-1097 doi: 10.1007/s10409-012-0120-9

    [24]

    Wang Q, Zhao X. Phase diagrams of instabilities in compressed film-substrate systems. Journal of Applied Mechanics, 2014, 81(5):051004 https://www.researchgate.net/publication/266401461_Phase_Diagrams_of_Instabilities_in_Compressed_Film-Substrate_Systems

    [25]

    Jin L, Suo Z. Smoothening creases on surfaces of strain-stiffening materials. Journal of the Mechanics and Physics of Solids, 2015, 74:68-79 doi: 10.1016/j.jmps.2014.10.004

    [26]

    Li Z, Zhou Z, Li Y, et al. Effect of cyclic loading on surface instability of silicone rubber under compression. Polymers, 2017, 9(4):148 doi: 10.3390/polym9040148

    [27]

    Tang S, Gao B, Zhou Z, et al. Dimension-controlled formation of crease patterns on soft solids. Soft Matter, 2017, 13(3):619-626 doi: 10.1039/C6SM02013E

    [28]

    Greaves GN, Greer AL, Lakes RS, et al. Poisson's ratio and modern materials. Nature Materials, 2011, 10(11):823-837 doi: 10.1038/nmat3134

    [29]

    Tang S, Li Y, Liu WK, et al. Surface ripples of polymeric nanofibers under tension:the crucial role of Poisson's ratio. Macromolecules, 2014, 47(18):6503-6514 doi: 10.1021/ma5012599

    [30]

    Milton GW. Composite materials with Poisson's ratios close to-1. Journal of the Mechanics and Physics of Solids, 1992, 40(5):1105-1137 doi: 10.1016/0022-5096(92)90063-8

    [31]

    Grima JN, Alderson A, Evans KE. Auxeticbehaviour from rotating rigid units. Physica Status Solidi (b), 2005, 242(3):561-575 doi: 10.1002/(ISSN)1521-3951

    [32]

    Babaee S, Shim J, Weaver JC, et al. 3D Soft metamaterials with negative Poisson's ratio. Advanced Materials, 2013, 25(36):5044-5049 doi: 10.1002/adma.201301986

    [33]

    Hibbitt, Karlsson, Sorensen. ABAQUS:Theory Manual. Hibbitt, Karlsson & Sorensen, 1997 https://things.maths.cam.ac.uk/computing/software/abaqus_docs/docs/v6.12/books/stm/default.htm

    [34]

    Belytschko T, Liu WK, Moran B, et al. Nonlinear finite elements for continua and structures. New York:John Wiley & Sons, 2013

    [35]

    Bertoldi K, Gei M. Instabilities in multilayered soft dielectrics. Journal of the Mechanics and Physics of Solids, 2011, 59(1):18-42 doi: 10.1016/j.jmps.2010.10.001

    [36]

    Li Y, Wang XS, Fan Q. Effects of elastic anisotropy on the surface stability of thin film/substrate system. International Journal of Engineering Science, 2008, 46(12):1325-1333 doi: 10.1016/j.ijengsci.2008.07.008

    [37]

    Tang S, Li Y, Yang Y, et al. The effect of mechanical-riven volumetric change on instability patterns of bilayered soft solids. Soft Matter, 2015, 11:7911-7919 doi: 10.1039/C5SM01614B

    [38]

    Tang S, Greene MS, Peng XH, et al. Chain confinement drives the mechanical properties of nanoporous polymers. EPL (Europhysics Letters), 2014, 106(3):36002 doi: 10.1209/0295-5075/106/36002

    [39]

    Lu N, Wang X, Suo Z, et al. Metal films on polymer substrates stretched beyond 50%. Applied Physics Letters, 2007, 91(22):221909 doi: 10.1063/1.2817234

    [40]

    Xiao J, Carlson A, Liu ZJ, et al. Stretchable and compressible thin films of stiff materials on compliant wavy substrates. Applied Physics Letters, 2008, 93(1):013109 doi: 10.1063/1.2955829

    [41]

    Kim DH, Ahn JH, Choi WM, et al. Stretchable and foldable silicon integrated circuits. Science, 2008, 320(5875):507-511 doi: 10.1126/science.1154367

    [42]

    Rogers JA, Someya T, Huang Y. Materials and mechanics for stretchable electronics. Science, 2010, 327(5973):1603-1607 doi: 10.1126/science.1182383

    [43]

    Xu F, Lu W, Zhu Y. Controlled 3D buckling of silicon nanowires for stretchable electronics. Acs Nano, 2010, 5(1):672-678 https://www.researchgate.net/publication/49712445_Controlled_3D_Buckling_of_Silicon_Nanowires_for_Stretchable_Electronics

图(3)
计量
  • 文章访问数:  1368
  • HTML全文浏览量:  198
  • PDF下载量:  736
  • 被引次数: 0
出版历程
  • 收稿日期:  2017-05-07
  • 网络出版日期:  2017-05-30
  • 刊出日期:  2017-07-17

目录

/

返回文章
返回