FREE VIBRATION ANALYSIS OF CURVILINEARLY STIFFENED KIRCHHOFF-MINDLIN PLATES
-
摘要: 相比传统加筋板,曲线加筋板能够更充分地发挥材料力学性能.在加筋板力学分析中,厚板通常采用Reissner-Mindlin理论,然而当板厚较薄时易出现剪切自锁,离散的Kirchhoff-Mindlin理论采用假设剪切应变场可避免该问题.针对曲线加筋Kirchhoff-Mindlin板自由振动分析,采用离散的Kirchhoff-Mindlin三角形单元和Timoshenko曲梁单元分别模拟板和加强筋,根据板的位移插值函数及筋板交界面的位移协调条件,建立基于板单元位移自由度的有限元方程.为了验证方法的有效性和准确性,采用直线加筋薄板、曲线加筋薄板和厚板3种模型进行算例研究,通过收敛性和精度分析来选择合理的有限元网格密度.直线加筋薄板前20阶固有频率均与文献结果吻合良好;曲线加筋板算例中,本文方法满足收敛条件的板单元数目为2469,Nastran模型板单元数目为6243;本文所得曲线加筋板固有频率与Nastran计算结果最大误差为3.4%.研究结果表明,本文方法无需筋板单元共节点,可使用较少的有限元网格数量,并能够保证计算精度;在离散Kirchhoff-Mindlin三角形板单元基础上构造Timoshenko梁单元可同时适用于曲线加筋薄板与厚板自由振动分析.
-
关键词:
- 曲线加筋 /
- Kirchhoff-Mindlin板 /
- 自由振动分析
Abstract: Compared with traditional stiffened plates, curvilinearly stiffened plates can deliver the mechanical properties of materials more adequately. In mechanical analysis of stiffened thick plates, Reissner-Mindlin theory is usually adopted. However, difficulties are encountered in connection with shear locking when the plate thickness approaches zero. In order to avoid the above problem, the discrete Kirchhoff-Mindlin theory was investigated by employing the assumption of shear strain field. An efficient finite element approach for free vibration analysis of curvlinearly stiffened KirchhoffMindlin plates is presented in this paper. The discrete Kirchhoff-Mindlin triangular (DKMT) element and the Timoshenko curved beam element are employed for modeling the plate and the stiffeners, respectively. The finite element equation is established through the displacement interpolation function of plate and the displacement compatibility conditions at the plate-stiffener interfaces. In order to verify the efficiency and accuracy of the present method, linearly stiffened thin plate and curvilinearly stiffened thin and thick plates are used as numerical examples. The reasonable finite element mesh density is selected by convergence and accuracy analysis. The first 20 natural frequencies of the linearly stiffened plate are in good agreement with the literature. In the examples of the curvilinearly stiffened plate, the number of plate elements satisfying the convergence condition is 2469, while the number in Nastran model is 6243. The maximum error of the natural frequency between the present method and Nastran is 3.4%. Results show that present approach can guarantee the accuracy of calculation with less number of elements. The present method can be applied to the free vibration analysis of both stiffened thin and thick plates. -
引言
加筋结构在同等重量条件下具有更加出色的力学性能,已广泛应用于航空航天、船舶、汽车等领域.传统的加筋板/壳多采用横向、纵向或按照特定角度铺设筋条,并不能最大限度地发挥材料性能. Kapania等[1]提出了曲线筋的概念,曲线加筋可有效考虑局部性能,更利于结构的优化设计.
在加筋板有限元建模中,当筋条形状发生改变时,为使筋板节点一致,必须对筋节点重新划分单元.为了克服这种困难,许多研究者提出在有限元分析中使用等参单元对筋板分别建模,然后利用板单元的节点近似表达筋单元节点. Mukhopadhyay等[2]进行了偏心加筋板的自由振动分析.通过有限元方法中的插值函数,利用筋板接触面的位移协调条件,使得筋的位移和几何坐标可以用板的形式表达.因此,加强筋可以被布置在板单元内的任意位置,无需沿着板的节点线布置. Ghosh和Biswal[3-4]使用四节点矩形单元模拟板单元,加强筋单元刚度矩阵用筋节点所在的四节点板单元来表达. Kumar和Mukhopadhyay[5]使用梁单元对加强筋来建模.梁单元的节点位移和坐标被其所在板的壳单元节点位移和坐标插值得到.此模型被广泛应用于加筋板结构的静力分析[6-7],屈曲分析[8-10],自由振动分析和瞬态动力学分析[11-15].
关于加强筋的建模方法,经历了一段时期的发展,早期线性插值函数被用来模拟加强筋,但事实证明它会导致较大的位移、应力误差[16],随后,科研工作者采取增加节点自由度、增加插值函数的阶数来提高模拟精度[17].近来,人们多采用3节点梁单元,对加强筋进行建模[18-20].
为了对加筋板的板单元建模,基于Kirchhoff薄板理论,Barik等[21]结合四节点矩形平面应力单元和板弯曲单元进行了加筋板的静力、自由振动和前屈曲分析.基于Reissner-Mindlin厚板理论,Mukheriee和Mukhoadhyay[22]使用等参单元进行加筋板自由振动和屈曲分析. Holopainen[23]应用混合插值弯曲板单元进行加筋板的自由振动分析,可以有效避免剪切锁死,且具有较好收敛性. Nguyen-Thoi等[24]基于平滑离散剪切间隙方法,将板单元和膜元结合,并使用厚梁单元模拟筋条进行了加筋板的自由振动分析.章向明等[25-26]构造了用于复合材料偏心加筋板、壳结构大变形分析的板、壳单元,此模型将肋骨连同板、壳视为一个单元,即偏心加筋板、壳单元,同时考虑了几何非线性和剪切变形.张志峰等[27]基于精细三角形Mindlin板单元构造了21个自由度三角形复合材料加筋板、壳单元,并将其应用于加筋板、壳结构振动、屈曲的分析.
Katili[28]基于Reissner-Mindlin板理论和假设剪切应变场提出了一种离散的Kirchhoff-Mindlin三角形弯曲板单元DKMT,这种单元同时适用于厚板与薄板分析,可以避免剪切锁死和零能模式.
本文使用DKMT单元作为板单元,采用网格划分工具DistMesh[29]生成板的有限元网格,铁木辛柯梁单元作为筋单元,利用三阶B-Spline曲线对加强筋进行几何建模.筋板单元无需共节点,加强筋可以在板内任意布置.本文首先进行了收敛性研究,将直线加筋板频率结果与文献结果进行对比验证,得出了收敛的有限元模型;其次分别分析了薄板和厚板情况下的曲线加筋板固有频率和振型,并与Nastran分析结果进行对比.
1. 离散Kirchhoff-Mindlin三角形单元
1.1 位移场
离散Kirchhoff-Mindlin三角形单元(discrete Kirchhoff-Mindlin triangular, DKMT)是一种包含横剪切效应的弯曲板单元, 结合文献[30]中对板单元内挠度场定义,单元内任意一点挠度和法线转角可以表达为
$$ \left.\!\!\begin{array}{l} w_p = \sum\limits_{i = 1}^3 {N_{p, i} w_{p, i} } \\ \beta _{px} = \sum\limits_{i = 1}^3 {N_{p, i} \beta _{px, i} } + \sum\limits_{k = 4}^6 {P_k C_k \Delta \beta _{sk} } \\ \beta _{py} = \sum\limits_{i = 1}^3 {N_{p, i} \beta _{py, i} } + \sum\limits_{k = 4}^6 {P_k S_k \Delta \beta _{sk} } \end{array}\!\!\right \} $$ (1) 其中, $N_{p, 1}=\lambda $ , $N_{p, 2}=\xi $ , $N_{p, 3}=\eta $ , $P_{k}$ 表示一组高阶函数, $P_{4}=4\lambda \xi $ , $P_{5}=4\xi \eta $ , $P_{6}=4\lambda \eta $ , $\lambda =1-\xi -\eta $ . $w_{p, i}$ 是1, 2, 3节点的挠度, $\beta _{px, i}$ 和 $\beta_{py, i}$ 是1, 2, 3节点的转角, $\Delta \beta_{sk}$ 是中点4, 5, 6的转角. $C_{k}$ 和 $S_{k}$ 是三角形边与 $x$ 轴所成角度的余弦和正弦值.单元如图 1所示.
1.2 本构关系
弯曲应变为
$$ {\pmb \kappa } = \left\{ \!\!\begin{array}{l} \kappa _x \\ \kappa _y \\ \kappa _{xy} \end{array}\!\!\right\} = \left[\!\!\begin{array}{cc} {\dfrac{\partial }{\partial x}} & 0 \\ 0 & {\dfrac{\partial }{\partial y}}\\ {\dfrac{\partial }{\partial y}} & {\dfrac{\partial }{\partial x}} \end{array}\!\!\right]\left\{\!\! \begin{array}{c} {\beta _{px} } \\ {\beta _{py} } \\ \end{array}\!\! \right\} $$ (2) 将式(1) 代入式(2),得
$$ {\pmb \kappa } = {\pmb B}_{b\beta } {\pmb u}_p + {\pmb B}_{b\Delta \beta } \Delta {\pmb \beta}_{sk} $$ (3) 剪应变可以表示为
$$ {\pmb \gamma } = \left\{ \begin{array}{l} \gamma _{xz} \\ \gamma _{yz} \end{array}\right\} = {\pmb B}_{s\Delta \beta } \Delta {\pmb\beta}_{sk} $$ (4) 式中, ${\pmb u}_{p}$ 为三角形单元三个角节点位移, $\Delta {\pmb\beta}_{sk}$ 为三个边中点切向转角, $\Delta {\pmb\beta }_{sk}$ 与 ${\pmb u}_{p}$ 之间有如下转换关系
$$ \Delta {\pmb\beta} _{sk} = {\pmb A}_n {\pmb u}_p $$ (5) 式(3)~式(5) 中, ${\pmb B}_{b\beta }$ , ${\pmb B}_{b\Delta \beta }$ , ${\pmb B}_{s\Delta \beta }$ 和 ${\pmb A}_{n}$ 表达式见参考文献[28].
对于线弹性、各向同性均匀的平板,弯矩本构方程为
$$ \left\{ {\begin{array}{*{20}{l}} {{M_x}}\\ {{M_y}}\\ {{M_{xy}}} \end{array}} \right\} = {D_b}\left[{\begin{array}{*{20}{c}} 1&v&0\\ v&1&0\\ 0&0&{\frac{1}{2}(1-v)} \end{array}} \right]\left\{ {\begin{array}{*{20}{l}} {{\kappa _x}}\\ {{\kappa _y}}\\ {{\kappa _{xy}}} \end{array}} \right\} = {\boldsymbol{H}_b}\left\{ {\begin{array}{*{20}{l}} {{\kappa _x}}\\ {{\kappa _y}}\\ {{\kappa _{xy}}} \end{array}} \right\} $$ (6) 剪力本构方程为
$$ \left\{\!\! \begin{array}{l} T_x \\ T_y \end{array}\!\! \right\} = D_{sh} \left[\!\! \begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\!\! \right]\left\{\!\!\begin{array}{l} \gamma _{xz} \\ \gamma _{yz} \end{array}\!\! \right\} = {\pmb H}_{sh} \left\{\!\! \begin{array}{l} \gamma _{xz} \\ \gamma _{yz} \end{array} \!\! \right\} $$ (7) 其中, $D_{b} =Eh^{3}/12(1-v^{2})$ , $D_{sh}=kGh$ , $E$ 是杨氏模量, $h$ 是平板厚度, $v$ 是泊松比, $k =5/6$ 是剪切修正系数, $G$ 是剪切模量.
1.3 单元的刚度矩阵与质量矩阵
弯曲刚度矩阵为
$$ {\boldsymbol{K}_b} = {\rm{ }}\int {_{{A^e}}} {\boldsymbol{B}_b}^{\rm{T}}{\boldsymbol{H}_b}{\boldsymbol{B}_b}{\rm{d}}A $$ (8) 其中
$$ {\pmb B}_b = {\pmb B}_{b\beta } + {\pmb B}_{b\Delta \beta } {\pmb A}_n $$ (9) 剪切刚度矩阵为
$$ {\pmb K}_{sh} = {\rm{ }}\int {_{{A^e}}} {{\pmb B}_{sh} }^{\rm T} {\pmb H}_{sh} {\pmb B}_{sh} {\rm{d}}A $$ (10) 其中
$$ {\pmb B}_{sh} = {\pmb B}_{s\Delta \beta } {\pmb A}_n $$ (11) 则采用两点高斯积分得到板单元的刚度矩阵为
$$ {\pmb K}_p ={\pmb K}_b +{\pmb K}_{sh} $$ (12) 单元的质量矩阵 ${\pmb M}_{p}$ 采用集中质量矩阵,单元的每个结点上集中1/3的质量.
2. 曲线加强筋理论
假设曲线加强筋具有均匀截面,由均质、各向同性、线弹性材料制成,如图 2所示.利用三节点等参梁单元模拟加强筋,其坐标可由节点坐标和插值函数表示为
$$ r_s = \sum\limits_{i = 1}^3 {N_{s, i} } r_{s, i} $$ (13) 其中, $r_{s}=(x_{s}, y_{s})$ 为加强筋在整体坐标系中的坐标; $N_{s, i}$ 是3节点等参曲梁单元的形函数.根据曲线筋的切线方向 $t$ 、法线方向 $n$ 、次法线方向 $b$ 建立局部坐标系, 任意点的位移场可由其单元节点位移和插值函数表示为
$$ u_s = \sum\limits_{i = 1}^3 {N_{s, i} } u_{s, i} $$ (14) 其中, ${{\pmb u}_{s}}^{\rm T}=\{w_{b}, \beta_{t}, \beta_{n}\}$ , $u_{s, i}$ 是局部坐标系下曲线筋单元第 $i$ 个节点的位移.
线性应变可以表示为
$$ \left\{ \!\!\begin{array}{l} \gamma _n \\ \kappa _t \\ \kappa _n \end{array}\!\!\right\} = \left[\!\!\begin{array}{ccc} {\dfrac{\rm{d}}{\rm{d}\xi }} & 1 & 0 \\ 0 & {\dfrac{\rm{d}}{\rm{d}\xi }} & {\dfrac{1}{R}} \\ 0 & {-\dfrac{1}{R}} & {\dfrac{\rm{d}}{\rm{d}\xi }} \\ \end{array}\!\!\right]\left\{\!\!\begin{array}{l} w_b \\ \beta _t \\ \beta _n \end{array}\!\!\right\} = {\pmb B}_s {\pmb u}_s $$ (15) 加强筋的弹性常数矩阵可以写为
$$ {\pmb D}_s = \left[\!\!\begin{array}{ccc} {G_s A_b } & 0 & 0 \\ 0 & {E_s I_n } & 0 \\ 0 & 0 & {G_s J_t } \end{array} \!\! \right] $$ (16) 加强筋的质量矩阵可以写成
$$ {\pmb m}_s = \rho _s \left[\!\!\begin{array}{ccc} {A_s } & 0 & 0 \\ 0 & {A_s } & 0 \\ 0 & 0 & {I_n + I_b } \end{array}\!\! \right] $$ (17) 其中, $1/ R$ 表示加强筋曲率[14], $E_{s}$ 是加强筋的弹性模量; $G_{s}$ 是加强筋的剪切模量; $A $ 是加强筋的横截面积; $b_{s}$ 和 $h_{s}$ 分别是加强筋的截面宽度和高度; $A_{b}$ 表示 $b$ 方向的剪切面积, $A_b=K_{b}A$ ; $K_{b}$ 表示 $b$ 方向的剪切强度因子; $I_{n}$ 和 $I_{b}$ 表示加强筋横截面相应于 $n$ 方向和 $b$ 方向的二次转矩, $I_{n}=b_{s}h^3_s/12+e^{2}A_{s}$ , $I_{b}=b_{s}h^3_s/12$ ; $J_{t}$ 是加强筋截面的扭力常数,对于矩形加强筋,可以近似表示为 $J_{t}=h_{s}b_{s}^{3}/3$ .
3. 加筋板有限元方程
得到上述加强筋应变矩阵及弹性矩阵后,可通过数值积分计算加强筋刚度矩阵和质量矩阵,但此时的刚度矩阵和质量矩阵仍由加强筋的位移来表示,为建立加筋板的有限元方程,需采用板的节点位移来表示加强筋的位移.分析流程如图 3所示.
在筋板接触位置,筋与板的坐标和位移都应是相同的,板单元内的坐标和位移可采用板单元节点插值表示,在整体坐标系下,第 $i$ 个筋节点的坐标可由板节点坐标表示为
$$ r_{s, i} = \sum\limits_{j = 1}^3 {N_{p, j} r_{p, j} } $$ (18) 加强筋在局部坐标系下和整体坐标系下的位移可以通过转换矩阵实现转换
$$ {\pmb u}_s = {\pmb T}_s {\pmb u}_{sg} $$ (19) 其中, ${{\pmb u}_{sg}}^{\rm T}=\{w_{s}, \beta_{sx}, \beta_{sy}\}$ 为加强筋在整体坐标系下的位移.转换矩阵为
$$ {\pmb T}_s = \left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & {\cos \alpha } & {\sin \alpha } \\ 0 & {-\sin \alpha } & {\cos \alpha } \end{array} \right] $$ (20) 加强筋在整体坐标系下的位移可用筋节点位移插值表示为
$$ \left. \begin{array}{l} {w_s} = \sum\limits_{i = 1}^3 {{N_{s, i}}} {w_{s, i}}\\ {\beta _{sx}} = \sum\limits_{i = 1}^3 {{N_{s, i}}} {\beta _{sx, i}}\\ {\beta _{sy}} = \sum\limits_{i = 1}^3 {{N_{s, i}}} {\beta _{sy, i}} \end{array} \right\} $$ (21) 则整体坐标系下第 $i$ 个筋节点的位移可由板节点位移表示为
$$ \left. \begin{array}{l} {w_{s, i}} = \sum\limits_{j = 1}^3 {{N_{p, j}}{w_{p, j}}} \\ {\beta _{sx, i}} = \sum\limits_{j = 1}^3 {{N_{p, j}}{\beta _{px, j}}} + \sum\limits_{k = 4}^6 {{P_k}{C_k}\Delta {\beta _{sk}}} \\ {\beta _{sy, i}} = \sum\limits_{j = 1}^3 {{N_{p, j}}{\beta _{py, j}}} + \sum\limits_{k = 4}^6 {{P_k}{S_k}\Delta {\beta _{sk}}} \end{array} \right\} $$ (22) 根据式(5) 可知边中点切向转角与板三个角节点位移之间的关系,将式(5) 和式(22) 代入式(21) 可得
$$ \left. \begin{array}{l} {w_s} = \sum\limits_{i = 1}^3 {{N_{s, i}}} (\sum\limits_{j = 1}^3 {{N_{p, j}}{w_{p, j}}} )\\ {\beta _{sx}} = \sum\limits_{i = 1}^3 {{N_{s, i}}} (\sum\limits_{j = 1}^3 {{N_{p, j}}{\beta _{px, j}}} + \sum\limits_{k = 4}^6 {{P_k}{C_k}{A_n}{u_p}} )\\ {\beta _{sy}} = \sum\limits_{i = 1}^3 {{N_{s, i}}} (\sum\limits_{j = 1}^3 {{N_{p, j}}{\beta _{py, j}}} + \sum\limits_{k = 4}^6 {{P_k}{S_k}{A_n}{u_p}} ) \end{array} \right\} $$ (23) 则加强筋内的位移场就可由板单元的节点位移来表示
$$ {\pmb u}_{sg} = {\pmb N}_{sp} {\pmb u}_p $$ (24) 至此,筋和板节点位移自由度转化完成,并可以得到由板的位移自由度表示的加强筋的刚度矩阵,则加强筋的单元刚度矩阵可以表示为
$$ {\pmb K}_s^e = \int_{ - 1}^1 {{\boldsymbol{N}_{sp}}^{\rm{T}}}{{\pmb T}_s }^{\rm T} {{\pmb B}_S }^{\rm T} {\pmb D}_s {\pmb B}_S {\pmb T}_s {\pmb N}_{sp} \det {\pmb J}_s \rm{d}\xi $$ (25) 加强筋的单元质量矩阵可以表示为
$$ {\pmb M}_s^e = \int_{ - 1}^1 {{\boldsymbol{N}_{sp}}^{\rm{T}}} {{\pmb T}_s }^{\rm T} {\pmb m}_s {\pmb T}_s {\pmb N}_{sp} \det {\pmb J}_s \rm{d}\xi $$ (26) ${\pmb J}_{s}$ 是筋单元的雅克比矩阵, 行列式的值为
$$ {\rm det}\, {\pmb J}_s = \left[{\left( {\sum\limits_{i = 1}^3 {N_i x_i } } \right)^2 + \left( {\sum\limits_{i = 1}^3 {N_i y_i } } \right)^2} \right]^{1 / 2} $$ (27) 建立曲线加筋板的自由振动分析有限元方程如下
$$ \left[{\left( {{\pmb K}_p + {\pmb K}_s } \right)-\omega ^2\left( {{\pmb M}_p + {\pmb M}_s } \right)} \right] {\pmb d} ={\bf 0} $$ (28) 其中, ${\pmb K}_{p}$ 和 ${\pmb K}_{s}$ 分别是板和筋的刚度矩阵,通过两点高斯积分求得; ${\pmb M}_{p}$ 和 ${\pmb M}_{s}$ 分别是板和筋的质量矩阵, ${\pmb M}_{p}$ 由集中质量矩阵求得, ${\pmb M}_{s}$ 通过两点高斯积分求得; $\omega $ 是固有频率; ${\pmb d}$ 是板的节点位移自由度向量.
4. 曲线筋参数化建模
Zhao等[10]提出一种曲线筋参数化建模方法,在参数化空间中,曲线筋的位置、曲率和筋条数目用于参数化加强筋的形状.利用三阶B-Spline曲线来生成曲线筋的形状曲线,起始点 $A$ 和结束点 $B$ 位于自然空间上的边缘,用于参数化曲线筋的位置,控制点 $C$ 用来控制曲线筋的曲率.初始控制点 $C_{0}$ 是线段 $AB$ 中点, ${\pmb d}$ 是垂直于向量 $AB$ 的单位向量,控制点 $C$ 的位置可以按曲率设计步长 $\alpha $ 沿方向 ${\pmb d}$ 移动 $C_{0}$ 得到.曲线加强筋的参数化表达方式如图 4所示.边界参数与点自然坐标的关系如表 1所示.
表 1 边界参数c和点自坐标(ξ, η)的关系Table 1. The relationship between the perimeter parameter ε and the point natural coordinates (ξ, η)5. 数值算例
5.1 直线加筋板自由振动分析
考虑一四周固支的直线加筋板,如图 5所示,加强筋偏心布置,材料参数 $E=68.9$ GPa, $v=0.3$ , $\rho =2\, 670$ kg/m $^{3}$ ,进行自由振动分析. Olson等[31]对此模型进行了自由振动实验以及有限元分析,Holopainen[23]应用一种混合插值弯曲板单元对此模型进行自由振动分析,Nguyen-Thoi等[24]基于平滑离散剪切间隙方法,将板单元和膜元结合,并使用厚梁单元模拟筋条对此模型进行了自由振动分析.
首先进行收敛性研究,计算无筋板固有频率随网格密度变化,从表 2结果可知, 当板网格密度为32 $\times$ 32时,板的自由振动频率开始收敛.保持板网格密度为32 $\times $ 32,研究直线加筋板固有频率随筋单元数目变化的收敛性,直线加筋板固有频率结果如表 3所示.由表 3可知,当筋单元数目为15时,加筋板固有频率开始收敛.由此可见,板单元网格密度采用32 $\times $ 32,每条加强筋单元数目采用15时,对此模型进行自由振动分析结果是收敛的.
表 2 无筋板固有频率随网格密度变化Table 2. Natural frequencies change for an unstiffened plate with the panel mesh density表 3 不同筋单元数目下加筋板(32×32) 固有频率Table 3. Natural frequencies change for the stiffened plate (32×32) with different stiffener elements number为了验证本方法的准确性,将本文计算所得数值结果与参考文献[23-24, 31]中的试验及仿真结果进行对比.对比结果参见表 4和图 6.由对比结果可知,本方法求得的固有频率和文献结果吻合较好,本方法的精确性得到了验证.
表 4 直线加筋板固有频率Table 4. Natural frequencies of the linearly stiffened plate5.2 曲线加筋板自由振动分析
5.2.1 收敛性及准确性验证
考虑一中心带孔曲线加筋板,模型如图 7所示,材料参数 $E =69$ GPa, $v =0.3$ , $\rho =2823$ kg/m $^{3}$ ,曲线筋的位置和曲率参数分别为 $\Delta \varepsilon =0.0625$ , $\alpha =0.5$ , 方板边长 $a=2$ m,厚度为 $t$ ,孔半径为 $r =0.4$ m,曲线筋截面如图 2所示,采用偏心加强筋,截面高度 $h_{s} =0.1908$ m,宽度 $b_{s} =0.0191$ m.边界条件为四周简支.
使用网格划分工具DistMesh划分板有限元网格,选择固定网格密度函数,通过调节参数 $h_{0}$ 来控制板单元网格划分[30].使用三阶B-Spline曲线来生成曲线筋的形状曲线,为保证筋条交汇处位移协调,在筋条交汇处建立节点,如图 8所示.
首先进行收敛性验证,选择板厚 $t =0.02$ m,通过调节参数 $h_{0}$ 获得5种不同密度网格,如图 9所示.对不加筋板进行自由振动分析,5种不同密度板单元网格下板的固有频率结果如表 5所示.结果表明,当 $h_{0} =0.04$ 时,板的固有频率开始收敛.保持板单元网格为 $h_{0} =0.04$ 时不变,网格数为2469,考察了不同数目筋单元对曲线加筋板的频率结果的影响.
表 5 无筋带孔板固有频率随板的网格尺寸变化(t = 0.02 m)Table 5. Natural frequencies change for an unstiffened plate with a hole with the panel mesh size (t = 0.02 m)曲线加筋板固有频率随着每条筋单元数目变化结果如表 6和图 10所示.结果表明,当每条筋采用15个单元时,曲线加筋板频率结果开始收敛,因此采用 $h_{0} =0.04$ 时的板网格和每条筋15个三节点梁单元作为本例的有限元模型,其数值结果认为是本方法的可靠结果.
表 6 曲线加筋板固有频率随筋单元数目变化(t = 0.02 m)Table 6. Natural frequencies change for the curvilinearly stiffened plate with the stiffener elements number (t = 0.02 m)为验证本方法的准确性,将数值结果与Nastran结果进行对比,结果如表 6所示.在Nastran建模中,采用6243个CTRIA3板单元,每条曲线加强筋采用50个CBAR梁单元.对比结果显示误差较小,本文方法准确性得到了验证.
5.2.2 振型分析结果
除了固有频率的验证,振型的验证也是必要的,振型的精确与否可以反映本文方法所求特征向量的准确性.利用图 7模型,选择 $t=0.02$ m和 $t=0.2$ m两种板厚,两种情况下的前五阶振型及频率分别如图 11和图 12所示.从图 11和图 12可以看出, 本文方法所获得振型及频率与Nastran结果吻合较好.
6. 结论
本文以离散的Kirchhoff-Mindlin三角形单元为板单元,Timoshenko梁单元为筋单元,建立了直线与曲线加筋板有限元模型,分别对双直筋加筋板与4条加强筋曲线加筋板进行模态分析,将计算结果与文献及Nastran仿真结果进行对比分析.得到如下结论:
(1) 采用离散的Kirchhoff-Mindlin三角形单元和Timoshenko梁单元分别为加筋板的板单元和梁单元,实现了一种曲线加筋板有限元分析方法.筋板单元无需共节点,当加强筋单元发生改变时,板网格无需进行改变.有限元分析结果表明, 本文方法可同时适用于薄板和厚板情况下的曲线加筋板分析.
(2) 通过收敛性研究表明, 本文方法对于分析直线和曲线加筋板问题收敛性较好.通过与文献结果及Nastran结果对比表明, 本文方法所得固有频率及特征向量精度较高,且本文方法可以采用比商业有限元软件更少的网格获得精度相近的结果.
(3) 采用离散的Kirchhoff-Mindin三角形单元模拟板单元进行加筋板分析时,板单元内挠度场可以通过单元角点挠度线性插值来表示,筋的位移自由度可以通过板的位移插值函数及筋板交界面的位移兼容条件,与板的位移自由度建立起映射关系,进而建立起基于板的位移自由度的结构有限元方程.
(4) 可以通过改变曲线筋的数目、位置和曲率参数来得到不同的曲线加筋板模型进行分析,从而对曲线加筋板结构的力学性能进行改变,为曲线加筋板结构优化设计提供了基础.
-
表 1 边界参数c和点自坐标(ξ, η)的关系
Table 1 The relationship between the perimeter parameter ε and the point natural coordinates (ξ, η)
表 2 无筋板固有频率随网格密度变化
Table 2 Natural frequencies change for an unstiffened plate with the panel mesh density
表 3 不同筋单元数目下加筋板(32×32) 固有频率
Table 3 Natural frequencies change for the stiffened plate (32×32) with different stiffener elements number
表 4 直线加筋板固有频率
Table 4 Natural frequencies of the linearly stiffened plate
表 5 无筋带孔板固有频率随板的网格尺寸变化(t = 0.02 m)
Table 5 Natural frequencies change for an unstiffened plate with a hole with the panel mesh size (t = 0.02 m)
表 6 曲线加筋板固有频率随筋单元数目变化(t = 0.02 m)
Table 6 Natural frequencies change for the curvilinearly stiffened plate with the stiffener elements number (t = 0.02 m)
-
[1] Kapania RK, Li J, Kapoor H. Öptimal design of unitized panels with curvilinear stiffeners//AIAA 5th ATIÖ and the AIAA 16th Lighter-than-Air Systems Technology Conference and Balloon Systems Conference, 2005, 3:1708-1737
[2] Mukherjee A, Mukhopadhyay M. Finite element free vibration of eccentrically stiffened plates. Computers & Structures, 1988, 30(6):1303-1317 https://www.researchgate.net/profile/Abhijit_Mukherjee3/publication/250695224_Finite_element_free_vibration_of_eccentrically_stiffened_plates/links/02e7e53bcd939bbf26000000.pdf?inViewer=0&pdfJsDownload=0&origin=publication_detail
[3] Biswal KC, Ghosh AK. Finite element analysis for stiffened laminated plates using higher order shear deformation theory. Computers & Structures, 1994, 53(1):161-171 https://www.researchgate.net/publication/222351909_Finite_element_analysis_for_stiffened_laminated_plates_using_higher_order_shear_deformation_theory
[4] Ghosh AK, Biswal KC. Free-vibration analysis of stiffened laminated plates using higher-order shear deformation theory. Finite Elements in Analysis and Design, 1996, 22(2):143-161 doi: 10.1016/0168-874X(95)00051-T
[5] Kumar YVS, Mukhopadhyay M. A new triangular stiffened plate element for laminate analysis. Composites Science and Technology, 2000, 60(6):935-943 doi: 10.1016/S0266-3538(99)00190-6
[6] Kumar YVS, Srivastava A. First ply failure analysis of laminated stiffened plates. Composite Structures, 2003, 60(3):307-315 doi: 10.1016/S0263-8223(02)00350-1
[7] Peng S, Kapania RK, Dong CY. Finite Element Approach to the Static, Vibration and Buckling Analysis of Curvilinearly Stiffened Plates//56th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, 2015
[8] Kumar YVS, Mukhopadhyay M. A new finite element for buckling analysis of laminated stiffened plates. Composite Structures, 1999, 46(4):321-331 doi: 10.1016/S0263-8223(99)00059-8
[9] Shi P, Kapania RK, Dong CY. Vibration and buckling analysis of curvilinearly stiffened plates using finite element method. AIAA Journal, 2015, 53(5):1319-1335 doi: 10.2514/1.J053358
[10] Zhao W, Kapania RK. Buckling analysis of unitized curvilinearly stiffened composite panels. Composite Structures, 2016, 135:365-382 doi: 10.1016/j.compstruct.2015.09.041
[11] Prusty BG, Satsangi SK. Analysis of stiffened shell for ships and ocean structures by finite element method. Öcean Engineering, 2001, 28(6):621-638 https://www.researchgate.net/publication/286700506_Structural_analysis_of_ships'_stiffened_plate_panels_in_bending
[12] Prusty BG, Satsangi SK. Finite element transient dynamic analysis of laminated stiffened shells. Journal of Sound and Vibration, 2001, 248(2):215-233 doi: 10.1006/jsvi.2001.3678
[13] Kumar YVS, Mukhopadhyay M. Transient response analysis of laminated stiffened plates. Composite Structures, 2002, 58(1):97-107 doi: 10.1016/S0263-8223(02)00036-3
[14] Zhao W, Kapania RK. Vibration analysis of curvilinearly stiffened composite panel subjected to in-plane loads. AIAA Journal, 2017, 55(3):981-997 doi: 10.2514/1.J055047
[15] Shi P, Kapania RK, Dong CY. Free vibration of curvilinearly stiffened shallow shells. Journal of Vibration and Acoustics, 2015, 137(3):031006 doi: 10.1115/1.4029360
[16] Miller RE. Dynamic aspects of the error in eccentric beam modelling. International Journal for Numerical Methods in Engineering, 1980, 15(10):1447-1455 doi: 10.1002/(ISSN)1097-0207
[17] Miller RE. Reduction of the error in eccentric beam modelling. International Journal for Numerical Methods in Engineering, 1980, 15(4):575-582 doi: 10.1002/(ISSN)1097-0207
[18] Rikards R, Chate A, Özolinsh Ö. Analysis for buckling and vibrations of composite stiffened shells and plates. Composite Structures, 2001, 51(4):361-370 doi: 10.1016/S0263-8223(00)00151-3
[19] Bhar A, Phoenix SS, Satsangi SK. Finite element analysis of laminated composite stiffened plates using FSDT and HSDT:A comparative perspective. Composite Structures, 2010, 92(2):312-321 doi: 10.1016/j.compstruct.2009.08.002
[20] Thinh TI, Quoc TH. Finite element modeling and experimental study on bending and vibration of laminated stiffened glass fiber/polyester composite plates. Computational Materials Science, 2010, 49(4):S383-S389 doi: 10.1016/j.commatsci.2010.05.011
[21] Barik M, Mukhopadhyay M. A new stiffened plate element for the analysis of arbitrary plates. Thin-Walled Structures, 2002, 40(7):625-639 https://www.researchgate.net/publication/256380995_A_finite_element_large_displacement_analysis_of_stiffened_plates
[22] Mukhopadhyay M, Mukherjee A. Finite element buckling analysis of stiffened plates. Computers & Structures, 1990, 34(6):795-803 https://www.researchgate.net/profile/Abhijit_Mukherjee3/publication/223255336_Finite_element_buckling_analysis_of_stiffened_plates/links/557f88b108aeea18b77965f1.pdf
[23] Holopainen TP. Finite element free vibration analysis of eccentrically stiffened plates. Computers & Structures, 1995, 56(6):993-1007 https://www.researchgate.net/profile/Abhijit_Mukherjee3/publication/250695224_Finite_element_free_vibration_of_eccentrically_stiffened_plates/links/02e7e53bcd939bbf26000000.pdf?inViewer=true&disableCoverPage=true&origin=publication_detail
[24] Nguyen-Thoi T, Bui-Xuan T, Phung-Van P, et al. Static, free vibration and buckling analyses of stiffened plates by CS-FEM-DSG3 using triangular elements. Computers & Structures, 2013, 125:100-113 https://www.researchgate.net/profile/Phung-Van_Phuc/publication/236960103_Static_free_vibration_and_buckling_analyses_of_stiffened_plates_by_CS-FEM-DSG3_using_triangular_elements/links/0046351a80f289dab4000000/Static-free-vibration-and-buckling-analyses-of-stiffened-plates-by-CS-FEM-DSG3-using-triangular-elements.pdf
[25] 章向明, 王安稳.复合材料大变形任意加筋板单元.工程力学, 2001, 18(3):131-135 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200103018.htm Zhang Xiangming, Wang Anwen. Geometrically nonlinear plate element for arbitrarily stiffened laminated composite plates. Engineering Mechanics, 2001, 18(3):131-135 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200103018.htm
[26] 章向明, 王安稳, 梅炎祥.复合材料大变形任意加筋壳单元.工程力学, 2003, 20(5):134-138 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305025.htm Zhang Xiangming, Wang Anwen, Mei Yanxiang. A large deformation shell element for eccentrically arbitrary stiffened composite shells. Engineering Mechanics, 2003, 20(5):134-138 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX200305025.htm
[27] 张志峰, 陈浩然, 白瑞祥.一种分析AGS结构的三角形加筋板壳单元.工程力学, 2006, 23(A01):203-208 http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S1032.htm Zhang Zhifeng, Chen Haoran, Bai Ruixiang. A new triangular stiffened plate/shell element for composite grid structure analysis. Engineering Mechanics, 2006, 23(A01):203-208 (in Chinese) http://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S1032.htm
[28] Katili I. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields-part Ⅰ:An extended DKT element for thick-plate bending analysis. International Journal for Numerical Methods in Engineering, 1993, 36(11):1859-1883 doi: 10.1002/(ISSN)1097-0207
[29] Persson PÖ, Strang G. A simple mesh generator in MATLAB. SIAM Review, 2004, 46(2):329-345 doi: 10.1137/S0036144503429121
[30] Katili I, Maknun IJ, Hamdouni A, et al. Application of DKMQ element for composite plate bending structures. Composite Structures, 2015, 132:166-174 doi: 10.1016/j.compstruct.2015.04.051
[31] Ölson MD, Hazell CR. Vibration studies on some integral ribstiffened plates. Journal of Sound and Vibration, 1977, 50(1):43-61
-
期刊类型引用(8)
1. 陈卫,彭林欣. 加筋折叠壳静力弯曲的移动最小二乘无网格法. 计算力学学报. 2025(01): 106-114 . 百度学术
2. 邹卓夫,王彦皓,刘杨. 弹性边界约束加筋板结构振动特性与功率流分析. 噪声与振动控制. 2024(04): 56-62+89 . 百度学术
3. 汤冬,冉茂辉,马梓铜,王皓,罗锋. 非正交加筋对加筋板动刚度的强化作用与均化效应. 中国舰船研究. 2024(05): 148-157 . 百度学术
4. 张东健 ,郑锡涛 ,闫雷雷 ,路拓 ,徐建辉 ,张聪 . 基于高阶理论的加筋复合材料夹芯结构屈曲有限元模型. 力学学报. 2023(08): 1686-1698 . 本站查看
5. 徐晓建,邓子辰. 应变梯度Mindlin板边值问题的讨论. 力学学报. 2022(11): 3080-3087 . 本站查看
6. 杜超凡,郑燕龙,周晓婷,章定国. 作旋转运动功能梯度材料矩形Mindlin板的刚柔耦合动力学建模. 力学与实践. 2021(06): 849-860 . 百度学术
7. 马航空,周晨阳,李世荣. Mindlin矩形微板的热弹性阻尼解析解. 力学学报. 2020(05): 1383-1393 . 本站查看
8. 李珺璞,陈文. 一种模拟大规模高频声场的双层奇异边界法. 力学学报. 2018(04): 961-969 . 本站查看
其他类型引用(3)