RIGID AND LIQUID COUPLING DYNAMICS AND HYBRID CONTROL OF SPACECRAFT WITH MULTIPLE PROPELLANT TANKS
-
摘要: 采用复合控制方法对充液航天器的姿态和轨道机动进行高精度控制.通过傅里叶-贝塞尔级数展开法,将低重力环境下液体的弯曲自由表面的动态边界条件转化为简单的微分方程,其中耦合液体晃动方程的状态向量由相对势函数的模态坐标和波高的模态坐标组成.通过广义准坐标下的拉格朗日方程得到航天器刚体部分运动和液体燃料晃动的耦合动力学方程,提出了自适应快速终端滑模策略和输入整形技术相结合的复合控制器,并分别用于控制携带有一个燃料腔和四个燃料腔航天器的轨道机动和姿态机动.通过数值模拟来验证控制器的效率和精度.结果表明,对于多储液腔航天器,如果在设计航天器的姿态和轨道控制器时没有充分考虑燃料晃动效应,那么在受控航天器系统中将会出现刚-液-控耦合问题并导致航天器姿态不稳定.而本研究中的复合自适应终端滑模控制器可以实现航天器机动的高精度控制并有效抑制液体燃料晃动.
-
关键词:
- 液体晃动 /
- 多储液腔航天器 /
- 低重力环境 /
- 刚液控耦合动力学 /
- 终端自适应滑模控制器
Abstract: The compound control methods are widely used to control the orbit translation and attitude maneuver of liquidfilled spacecraft with high accuracy. The dynamic boundary conditions on curved liquid free surface under low-gravity environment are transformed to general simple differential equations by using Fourier-Bessel series expansion method and the state vectors of coupled liquid sloshing equations are composed by the modal coordinates of relative potential function and the modal coordinates of wave height. The coupled dynamic equations for the rigid platform motion and liquid fuel sloshing are obtained by means of Lagrange equations in terms of general quasi-coordinates. The expressions of the sloshing forces and moments are obtained by analyzing the liquid model. An adaptive fast terminal sliding mode controller and a composite controller that combines the adaptive fast terminal sliding mode strategy and the input shaping technology are respectively designed to control spacecraft orbit translation and attitude maneuver for two cases. In the first case, the spacecraft carries one partially liquid-filled propellant tank. In the second, the spacecraft carries four partially liquid-filled propellant tanks. The efficiency and the accuracy of the controllers are examined through numerical simulations. The results indicate that liquid-control-spacecraft coupled resonance can appear in the controlled spacecraft system if the sloshing effects have not been sufficiently taken accounted of during designing attitude and orbit controller for spacecraft with multiple propellant tanks, and this resonance will result in the instability of the spacecraft attitude. Nevertheless, such disadvantages have been efficiently inhibited by using presented composite adaptive terminal sliding mode controller. -
引言
现代航天器通常需要携带大量的液体燃料和液体氧化剂[1-20].为了储存这些液体,航天器内部应携带多个储液腔[21].携带多个储液腔提高了液体晃动的第一固有频率,并且避免了液体晃动和大型柔性附件振动之间产生的共振.然而,随着储液腔的增多,系统状态变量、自由度和系数矩阵规模也随之增加,航天器系统的控制方程也将更加复杂且更难通过传统方法建立.
滑模控制是一种广为人知的航天器鲁棒控制方法. Zhu等[22]研究了具有惯性不确定性和外部干扰的航天器的姿态稳定问题,并提出了一种自适应快速终端滑模 (AFTSM) 控制器. Tiwari等[23]为刚体航天器设计了一种具有全局鲁棒性和全局有限时间收敛的姿态控制器,并提出了二阶滑模控制理论. Yue等[24]基于动态反演方法和输入整形技术提出了一种用于充液航天器大角度机动的复合控制方法.虽然这些研究取得了一些成果,但其中航天器被简化为刚体,并且通过引入等效力学模型来考虑液体晃动.需要指出的是将基于等效力学模型得到的晃动动力学与航天器刚体动力学简单叠加并不能真实反映液体-航天器实际耦合系统的动力学特性[25].
本文将对由航天器主刚体和多个储液腔构成的耦合航天器系统建立数学模型,研究具有多个部分充液储液腔的航天器刚-液-控耦合动力学,设计了一种将输入整形技术与自适应快速终端滑模控制策略相结合的复合控制器,以减少液体晃动对航天器轨道和姿态机动的影响,结果表明本文所提出的控制器不仅可以确保充液航天器的位置和姿态渐近趋向目标同时还可有效抑制航天器内的燃料晃动.
1. 耦合航天器系统的基本方程
1.1 航天器的物理模型与状态方程
考虑如图 1所示的携带圆柱形储液腔的航天器.储液腔视为刚体,固定在航天器的主刚体上.液体视为不可压缩、无黏且无旋.正交坐标系 $A = B + C$ 是惯性参考坐标系.正交坐标系A是本体坐标系,坐标轴平行于航天器的惯性主轴.其中 $x, y, z$ 分别表示滚转、俯仰和偏航控制轴.滚转轴与航天器在轨飞行方向相同,俯仰轴垂直于轨道平面,偏航轴指向地球.圆柱坐标系 $o_i r_i \theta _i z_i $ 和正交坐标 $ o_i x_i y_i z_i $ 的共同原点 $o_i $ 位于储液腔i内弯曲自由液面的中心.假设坐标系 $o_i x_i y_i z_i $ 与坐标系 $oxyz$ 平行.向量 ${\pmb r}_{oi} = [r_{xi}, r_{yi}, r_{zi}]^{\rm T}$ 用来表示 $o_i $ 在本体坐标系 $oxyz$ 中的位置.未受干扰轴对称自由液面高度 $f_i (r_i )$ 和总波高 $\zeta _i (r_i, \theta _i, t_i )$ 从 $z_i = 0$ 平面开始测量,波高 $\eta _i (r_i, \theta _i, t)$ 从自由液面开始测量.用 $W_i $ 表示储液腔i的侧壁边界条件 ( $r_i = R_i $ , $R_i $ 是储液腔的半径), $B_i $ 表示储液腔的底部边界条件 ( $z_i = h_i $ , $h_i $ 是储液腔中液体的高度), $S_i $ 表示自由液面边界条件 ( $ z_i = - \zeta _i $ ), $L_i $ 表示自由液面和壁面接触线边界条件 ( $r_i = R_i $ 且 $z_i = - \zeta _i $ ).假设 ${\pmb R} = [R_x, \;R_y, \;R_z ]^{\rm T}$ 和 ${\pmb \theta }= [\theta _x, \;\theta _y, \;\theta _z]^{\rm T}$ 分别代表航天器主刚体相对于坐标系 $OXYZ$ 的位置矢量和姿态矢量, ${\pmb v} = \left[{v_x, v_y, v_z } \right]^{\rm T}$ 和 ${\pmb \omega} = \left[{\omega _x, \omega _y, \omega _z } \right]^{\rm T}$ 分别为航天器主刚体相对于坐标系 $oxyz$ 的速度矢量和角速度矢量.
用方向余弦矩阵和欧拉角来定义航天器相对于参考系的姿态.定义欧拉角 $\theta _x, \;\theta _y, \;\theta _z $ 为航天器绕本体坐标系 $x, \;y, \;z$ 轴的旋转角度.方便起见,定义坐标变换矩阵按照 $ox \to oy \to oz$ 的顺序求得,因此坐标系 $OXYZ$ 和坐标系 $oxyz$ 之间的坐标变换矩阵为
$$ {\pmb C} = \left[\!\!\begin{array}{ccc} {c_y c_z } & {c_x s_y + s_x s_y c_z } & {s_x s_z - c_x s_y c_z } \\ { - c_y s_z } & {c_x c_z - s_x s_y s_z } & {s_x c_z + c_x s_y s_z } \\ {s_y } & { - s_x c_y } & {c_x c_y } \end{array} \!\! \right] $$ (1) $$ {\pmb D} = \left[\!\!\begin{array}{ccc} {c_z c_y } & {s_z } & 0 \\ { - s_z c_y } & {c_z } & 0 \\ {s_y } & 0 & 1 \end{array}\!\! \right] $$ (2) 其中, $s_k = \sin \theta _k $ , $c_k = \cos \theta _k $ ( $k = x, \;y, \;z$ ).因此,可获得以下变换关系
$$ {\pmb v} = {\pmb C} \cdot \dot{\pmb R} $$ (3) $$ {\pmb \omega } = {\pmb D} \cdot \dot{\pmb \theta } $$ (4) 其中 ${\pmb \omega }$ 是航天器的角速度,可认为其分量是准坐标对时间的导数.
1.2 储液腔中液体晃动方程
储液腔i中某点 $P_i $ 的速度矢量为
$$ {\pmb v}_{pi} = {\pmb v} + {\pmb r}_p^\times {\pmb \omega} $$ (5) 其中 $v_{pi} $ 是点 $P_i $ 相对于坐标系 $oxyz$ 的位置矢量,符号 $(\;)^\times $ 表示相关矢量所对应的斜对称矩阵.对方程 (5) 引入直角坐标和圆柱坐标之间的转换关系,点 $P_i$ 关于坐标系 $o_i r_i \theta _i z_i $ 的速度可以写成如下形式
$$ \left. \begin{array}{l} v_{ri} = \left[ {v_x - \omega _z r_{yi} + \omega _y \left( {r_{zi} + z_i } \right)} \right]\cos \theta + \\ \qquad \left[ {v_y + \omega _z r_{xi} - \omega _x \left( {r_{zi} + z_i } \right)} \right]\sin \theta \\ v_{\theta i} = - \left[ {v_x - \omega _z r_{yi} + \omega _y \left( {r_{zi} + z_i } \right)} \right]\sin \theta + \\ \qquad \left[ {v_y + \omega _z r_{xi} - \omega _x \left( {r_{zi} + z_i } \right)} \right]\cos \theta + \omega _z r \\ v_{zi} = v_z + \omega _x r_{yi} - \omega _y r_{xi} + \omega _x r\sin \theta -\omega _y r\cos \theta \end{array} \right\} $$ (6) 根据叠加的原理,可以将液体晃动的总速度势能函数 $\varPhi $ 分解成扰动势函数 (或相对势函数) $\varPhi _r $ 和载流子速度势 $\varPhi _e$ [2].无量纲函数 $\varPhi _e $ 应满足拉普拉斯方程和储液腔侧壁和底部的非均匀边界条件
$$ \nabla ^2\varPhi _e = 0 $$ (7) $$ \dfrac{\partial \varPhi _e }{\partial R} = \bar {v}_{ri} \,, \ \ R = 1 $$ (8) $$ \dfrac{\partial \varPhi _e }{\partial Z} = \bar {v}_{zi} \,, \ \ Z = H_i $$ (9) 其中, $\varPhi _e = \phi _e / R_i^2 $ , $Z = z_i / R_i $ , $R = r_i / R_i $ , $H_i = h_i / R_i $ , $F = f_i / R_i $ , $\varPsi = \eta _i / R_i $ , $\bar {v}_{ri} = \left( {v_{ri} \vert _{R = 1} } \right) / R_i $ , $\bar {v}_{zi} = \left( {v_{zi} \vert _{Z = - H_i } } \right) / R_i $ 是缩放的无量纲参数或物理量.然后,把 $\varPhi _e $ 分解成 $\varPhi _{e1} $ 和 $\varPhi _{e2} $ 以满足式 (7) 和式 (8). $\varPhi _{e1} $ 的形式如下
$$ \varPhi _{e1} = \bar {v}_{ri} R $$ (10) 将式 (10) 代入式 (8) 和式 (9),得到
$$ \dfrac{\partial \varPhi _{e2} }{\partial R} = 0\,, \ \ R = 1 $$ (11) $$ \dfrac{\partial \varPhi _{e2} }{\partial Z} = \bar {v}_z + \omega _x R_{yi} - \omega _y R_{xi} + 2\omega _x R\sin \theta - \\ \qquad 2\omega _y R\cos \theta \,, \ \ Z = - H_i $$ (12) 方便起见,上述方程省略了 $\theta $ 的下标.根据式 (7)、式 (11) 和式 (12),假设函数 $\varPhi _{e2} $ 为如下形式
$$ \varPhi _{e2} = \left( {\bar {v}_z + \omega _x R_{yi} - \omega _y R_{xi} } \right)Z + \\ \qquad \sum\limits_{n = 1}^\infty {\left[ {A_n (t)\dfrac{\sinh \left( {\lambda _{n1} Z} \right)}{\cosh (\lambda _{n1} H_i )}{\rm J}_1 (\lambda _{n1} R)\sin \theta + } \right.} \\ \qquad \left. {B_n (t)\dfrac{\sinh \left( {\lambda _{n1} Z} \right)}{\cosh (\lambda _{n1} H_i )}{\rm J}_1 (\lambda _{n1} R)\cos \theta } \right] $$ (13) 其中 $\lambda _{n1} $ 是 ${\rm J}'_1 (\lambda _n ) = 0$ 的根.将式 (12) 中的变量R用傅里叶-贝塞尔级数展开,然后与式 (13) 比较,展开后得到的系数 $A_n $ 和 $B_n $ 为
$$ A_n (t) = \dfrac{4\omega _x }{\lambda _{n1} (\lambda _{n1}^2 - 1){\rm J}_1 (\lambda _{n1} )} $$ (14) $$ B_n (t) = - \dfrac{4\omega _y }{\lambda _{n1} (\lambda _{n1}^2 - 1){\rm J}_1 (\lambda _{n1} )} $$ (15) 将式 (14) 和式 (15) 代入式 (13),再与式 (10) 合并,得到势函数 $\varPhi _e $ 为
$$ \varPhi _e = \left\{ {\left[ {\bar {v}_x - \omega _z R_{o'y} + \omega _y \left( {R_{o'z} + Z} \right)} \right]\cos \theta + } \right. \\ \qquad \left. {\left[ {\bar {v}_y + \omega _z R_{o'x} - \omega _x \left( {R_{o'z} + Z} \right)} \right]\sin \theta } \right\} R + \\ \qquad \left( {\bar {v}_z + \omega _x R_{yi} - \omega _y R_{xi} } \right)Z + \\ \qquad \sum\limits_{n = 1}^\infty {\left[ {\dfrac{4\omega _x }{\lambda _{n1} (\lambda _{n1}^2 - 1){\rm J}_1 (\lambda _{n1} )}\dfrac{\sinh \left( {\lambda _{n1} Z} \right)}{\cosh (\lambda _{n1} H_i )}{\rm J}_1 (\lambda _{n1} R)\sin \theta - } \right.} \\ \qquad \left. { \dfrac{4\omega _y }{\lambda _{n1} (\lambda _{n1}^2 - 1){\rm J}_1 (\lambda _{n1} )}\dfrac{\sinh \left( {\lambda _{n1} Z} \right)}{\cosh (\lambda _{n1} H_i )}{\rm J}_1 (\lambda _{n1} R)\cos \theta } \right] $$ (16) 相对势函数 $\varPhi _r $ 必须满足式 (7)~式 (9),也应该满足自由液面上的运动学和动力学条件[26]
$$ \dfrac{\partial \psi }{\partial t} - \dfrac{\partial \left( {\varPhi _r + \varPhi _e } \right)}{\partial Z} + \dfrac{\partial \left( {\varPhi _r + \varPhi _e } \right)}{\partial R}\left( {\dfrac{{\rm{d}}F}{{\rm{d}}R}} \right) = 0\,, \\ \qquad Z = Z_0 = - F(R) $$ (17) $$ \dfrac{\partial \left( {\varPhi _r + \varPhi _e } \right)}{\partial t} + \dfrac{g}{R_i }\psi - \dfrac{\sigma _i }{\rho _i R_i^3 }\left\{ {\dfrac{1}{R}\dfrac{\partial }{\partial R}\left\{ {\dfrac{R\dfrac{\partial \psi }{\partial R}}{\left[ {1 + \left( {\dfrac{{\rm{d}}F(R)}{{\rm{d}}R}} \right)^2} \right]^{3/2}}} \right\} + } \right. \\ \qquad \left. {\dfrac{1}{R^2}\dfrac{\partial }{\partial \theta }\left\{ {\dfrac{\dfrac{\partial \psi }{\partial \theta }}{\left[ {1 + \left( {\dfrac{{\rm{d}}F(R)}{{\rm{d}}R}} \right)^2} \right]^{1/2}}} \right\}} \right\} = 0\,, \\ \qquad Z = Z_0 = - F(R) $$ (18) 此外,无量纲波高应满足自由接触角条件,即
$$ \dfrac{\partial \varPsi }{\partial R} = 0,\quad R = 1,\;Z = F(1) $$ (19) 为了精确地满足式 (7) 和式 (8), 式 (9) 中的所有齐次边界条件,相对势函数 $\varPhi _r $ 假定为
$$ \varPhi _r (R,\theta ,Z,t) =\\ \qquad \sum\limits_{n = 1}^\infty {\sum\limits_{m = 0}^\infty {\left[ {a_{nm} (t)\cos (m\theta ) + } \right.} } \left. {b_{nm} (t)\sin (m\theta )} \right]\cdot \\ \qquad {\rm J}_m \left( {\lambda _{nm} R} \right)\dfrac{\cosh \left[ {\lambda _{nm} (Z - H_i )} \right]}{\cosh (\lambda _{nm} H_i )} $$ (20) 波高 $\varPsi $ 假定为
$$ \psi (R,\theta ,t) = \sum\limits_{n = 1}^\infty \sum\limits_{m = 0}^\infty \left[ {c_{nm} (t)\cos (m\theta ) + }\right. \\ \qquad \left.{ d_{nm} (t)\sin (m\theta )} \right] {\rm J}_m \left( {\lambda _{nm} R} \right) $$ (21) 晃动力和晃动力矩是航天器稳定性和控制分析的重要晃动特性.储液腔i中的耦合晃动力属于由扰动势函数引起的扰动压力,主要包括沿着接触线作用在罐壁上的界面张力,通过图 1模型推导,可以表示为
$$ F_x (t) = - \int_0^{2 \pi } {\left( {\left. {\dfrac{\partial \eta }{\partial \theta }} \right|_{r = R_i } } \right)\sigma _i \sin \theta {\rm{d}}\theta } + \\ \qquad \int_0^{2 \pi } {\int_{ - \zeta _i }^{h_i } {\left( {\left. P \right|_{r = R_i } } \right)R_i \cos \theta {\rm{d}}z{\rm{d}}\theta } } $$ (22) $$ F_y (t) = - \int_0^{2 \pi } {\left( {\left. {\dfrac{\partial \eta }{\partial \theta }} \right|_{r = R_i } } \right)\sigma _i \cos \theta {\rm{d}}\theta } + \\ \qquad \int_0^{2 \pi } {\int_{ - \zeta _i }^{h_i } {\left( {\left. P \right|_{r = R_i } } \right)R_i \sin \theta {\rm{d}}z{\rm{d}}\theta } } $$ (23) $$ F_z (t) = \int_0^{2 \pi } {\int_0^{R_i } {\left( {\left. P \right|_{z = h_i } } \right)r{\rm{d}}\theta } } {\rm{d}}r $$ (24) 类似地,晃动力矩可以表示为
$$ M_x (t) = - \int_0^{2 \pi } {(\beta _i R_i + \left. \eta \right|_{r = R_i } )\left( {\left. {\dfrac{\partial \eta }{\partial \theta }} \right|_{r = R_i } } \right)\sigma \cos \theta {\rm{d}}\theta } - \\ \qquad \int_0^{2 \pi } {\int_{ - \zeta }^{h_0 } {\left( {\left. P \right|_{r = R_i } } \right)zR_i \sin \theta {\rm{d}}z{\rm{d}}\theta } } + \\ \qquad \int_0^{2 \pi } {\int_0^{R_i } {\left( {\left. P \right|_{z = h_i } } \right)r^2 \sin \theta {\rm{d}}\theta } } {\rm{d}}r $$ (25) $$ M_y (t) = \int_0^{2 \pi } {(\beta _i R_i + \left. \eta \right|_{r = R_i } )\left( {\left. {\dfrac{\partial \eta }{\partial \theta }} \right|_{r = R_i } } \right)\sigma _i \sin \theta {\rm{d}}\theta } + \\ \qquad \int_0^{2 \pi } {\int_{ - \zeta _i }^{h_0 } {\left( {\left. P \right|_{r = R_i } } \right)zR_i \cos \theta {\rm{d}}z{\rm{d}}\theta } } - \\ \qquad \int_0^{2 \pi } {\int_0^{R_i } {\left( {\left. P \right|_{z = h_i } } \right)r^2 \cos \theta {\rm{d}}\theta } } {\rm{d}}r $$ (26) 1.3 耦合系统的方程
对具有多个储液腔的航天器,运用准坐标下的拉格朗日方程来建立航天器系统的耦合方程,从而进行模块化建模[27].由储液腔中的液体晃动引起的耦合力和力矩可认为是外部非保守力和力矩,因此耦合方程组可表示为
$$ \dfrac{{\rm{d}}}{{\rm{d}}t}\left\{ {\dfrac{\partial L}{\partial {\pmb V}}} \right\} + {\pmb \omega }^\times \left\{ {\dfrac{\partial L}{\partial {\pmb V}}} \right\} - {\pmb C }_O \left\{ {\dfrac{\partial L}{\partial {\pmb R}}} \right\} = {\pmb F }_0 + \sum\limits_{i = 1}^{N_{\rm tank} } {\pmb F }_{oi} $$ (27) $$ \dfrac{{\rm{d}}}{{\rm{d}}t}\left\{ {\dfrac{\partial L}{\partial {\pmb \omega }}} \right\} + {\pmb v }^\times \left\{ {\dfrac{\partial L}{\partial {\pmb V }}} \right\} + {\pmb \omega }^\times \left\{ {\dfrac{\partial L}{\partial {\pmb \omega }}} \right\} - \left( { {\pmb D }_O ^{\rm T}} \right)^{ - 1}\left\{ {\dfrac{\partial L}{\partial {\pmb \theta }}} \right\}= \\ \qquad {\pmb M }_0 + \sum\limits_{i = 1}^{N_{\rm tank } } {\left( { {\pmb r}_{oi} ^\times {\pmb F }_{oi} + {\pmb M }_{oi} } \right)} $$ (28) 式 (27) 和式 (28) 可以重写为
$$ m_0 \dot {\pmb v} = - m_0 {\pmb \omega }^\times {\pmb v} + {\pmb f} + \sum\limits_{i = 1}^{N_{\rm tank} } {\pmb F}_i $$ (29) $$ { J}_0 \dot {\pmb\omega } = - {\pmb \omega }^\times { J}_0 {\pmb \omega } + {\pmb \tau } + \sum\limits_{i = 1}^{N_{\rm tank} } \left( {{\pmb r}_i ^\times {\pmb F}_i + {\pmb M}_i } \right) $$ (30) 其中 $m_0 $ 和 ${ J}_0 $ 分别是航天器主刚体的质量和转动惯量, ${\pmb f}$ 和 ${\pmb \tau }$ 分别是控制力和控制力矩, ${\pmb F}_i $ 和 $ {\pmb M}_i $ 分别是储液腔i中的晃动力和晃动力矩, $N_{\rm tank} $ 是储液腔的数量, ${\pmb v}$ 和 ${\pmb \omega }$ 分别是航天器主刚体相对于坐标轴 $oxyz$ 的速度和角速度.式 (29) 和式 (30) 都是耦合方程.如果定义 $ {\pmb Z}$ 作为系统的状态向量,并且 ${\pmb Z} = [R_x, R_y, R_z, \theta _x , \theta _y, \theta _z, v_x, v_y, v_z, \omega _x, \omega _y, \omega _z]^{\rm T}$ .
2. 耦合系统控制方案设计
2.1 航天器位置和姿态的自适应快速终端滑模控制方案
对于考虑惯性不确定性和外部干扰的航天器的姿态控制,这里直接给出自适应快速终端滑模 (AFTSM) 控制器为[22]
$$ \left.\!\!\begin{array}{l} {\pmb S} = {\pmb \omega } + k_1 {\pmb q}_v + k_2 {\rm sig}({\pmb q}_v )^p \\ {\pmb \tau } = - {\pmb \sigma } {\rm sig}({\pmb S})^p - {\rm sign}({\pmb S})\left[ {\hat {c}(t) + \hat {k}_3 (t)\left\| {\pmb \omega } \right\|} \right] \\ \dot {\hat {c}}(t) = p_0 \left[ { - \varepsilon _0 \hat {c}(t) + \left\| {\pmb S} \right\|} \right] \\ \dot {\hat {k}}_3 (t) = p_1 \left[ { - \varepsilon _1 \hat {k}_3 (t) + \left\| {\pmb S} \right\|\left\| {\pmb \omega } \right\|} \right] \end{array}\!\! \right \} $$ (31) 其中, ${\pmb S} = [S_1, S_2, S_3]^{\rm T} \in {\pmb R}^3$ , $k_1 > 0$ , $k_2 > 0$ , $0 < p < 1$ , ${\pmb \sigma } = {\rm diag}\left[{\sigma _1, \sigma _2, \sigma _3 } \right]$ , $\sigma _i > 0$ .向量 ${\pmb x} \in {\pmb R}^n$ 的范数定义为 $\left\| {\pmb x} \right\| = \sqrt { {\pmb x}^{\rm T}{\pmb x}} $ ,函数 ${\rm sig}( \cdot )^p$ 定义为
$$ {\rm sig}({\pmb x})^p = \left[ {\left| {{\pmb x}_1 } \right|^p {\rm sign}({\pmb x}_1 ),\cdots,\left| {s_n } \right|^p {\rm sign}({\pmb x}_n )} \right]^{\rm T} $$ (32) 对于航天器的轨道控制,这里给出航天器轨道的终端滑动面
$$ \bar {\pmb S} = {\pmb C}^{\rm T}{\pmb v} + \kappa _1 {\pmb R} + \kappa _2 {\rm sig}({\pmb R})^r $$ (33) 其中 $\kappa _1 > 0$ , $\kappa _2 > 0$ , $0 < r < 1$ .
根据参考文献[22],自适应滑模控制器中的轨道控制器可以推导为
$$ \left.\!\!\begin{array}{l} {\pmb f}_2 = {\pmb C}\left[ { - \kappa _3 \bar {\pmb S} - \kappa _4 {\rm sig}( \bar {\pmb S})^r} \right] - {\rm sat}( \bar {\pmb S},{\pmb e})\left[ {\hat {m}(t)\left\| {\pmb v} \right\| + \hat {f}(t)} \right] \\ \dot {\hat {m}}(t) = - \zeta _0 \hat {m}(t) + \left\| \bar {\pmb S} \right\| \\ \dot {\hat {f}}(t) = - \zeta _1 \hat {f}(t) + \left\| \bar {\pmb S} \right\|\left\| {\pmb v} \right\| \end{array}\!\! \right \} $$ (34) 其中 ${\pmb e} = [e_1, e_2, e_3]$ 表示振动边界,符号函数被定义为
$$ {\rm sat}\left[ {\bar {S}_i ,e_i } \right] = \left\{ \!\!\begin{array}{ll} {\rm sig}\left( {\bar {S}_i } \right) \,, & \left| {\bar {S}_i } \right| > e_i \\ \bar {S}_i / e_i \,, & \left| {\bar {S}_i } \right| \leqslant e_i \end{array} \right. $$ (35) 2.2 输入整形技术
输入整形技术采用前馈控制策略.因为不需要传感器反馈,前馈控制策略具有简单和有效的优点[28-29].为了增加输入整形过程的鲁棒性,Singhose[30]对整形器施加了一个使系统响应对频率的导数为零的约束,称为零振动零导数 (ZVD) 输入整形器.其包含如下3个脉冲
$$ \left[\!\! \begin{array}{l} A_i \\ t_i \end{array}\!\! \right] = \left[\!\! \begin{array}{ccc} {\dfrac{1}{(1 + K)^2}} & {\dfrac{2K}{(1 + K)^2}} & {\dfrac{K^2}{(1 + K)^2}} \\ 0 & {0.5T_d } & {T_d } \end{array} \!\! \right] $$ (36) 其中 $A_i $ 和 $t_i $ 分别是脉冲i的幅值和施加时间.并且
$$ K ={\rm exp} \,\Bigg (\dfrac{ - \xi \pi }{\sqrt {1 - \xi ^2} } \Bigg) \,, \ \ \ T_d = \dfrac{2 \pi }{\omega _0 \sqrt {1 - \xi ^2} } $$ (37) 其中 $\xi $ 是阻尼比, $\omega _0 $ 是无阻尼系统的固有频率.本文提出了一种混合控制方法,通过将输入整形技术整合到自适应滑模控制方法中,来减弱充液航天器轨道和姿态机动过程中液体晃动的动力学效应.
3. 数值模拟
分别考虑携带有一个和四个部分充液的储液腔的航天器来说明本文所设计控制器的有效性,分别如图 2和图 3所示.假设 $R_1 = 0.3$ m, $d_1 = 0.5$ m, $d_2 = 0.2$ m, $R_2 = 0.18$ m并且不同储液腔中的液体深度相同.在两种情况下,航天器内液体的总质量相同,都为 $m_1= 180$ kg.航天器主刚体的参数选择为: $m_0 = 200$ kg, $J_x = 400$ kg $ \cdot $ m2, $J_y = 300$ kg $\cdot $ m2, $J_z = 300$ kg $\cdot $ m2.假设航天器初始姿态 ${\pmb\theta } =[ \pi /12$ , $ \pi /12$ , $- \pi /36] ^{\rm T}$ ,目标位置 ${\pmb R} (0)=[10, 2, 3]^{\rm T}$ m.
在数值模拟中,控制器参数的初始值选择如下: $k_1 = 0.2$ , $k_2 = 0.01$ , $p = 0.6$ , ${\pmb \sigma } = 0.06J_0 $ , $\varepsilon _0 = \varepsilon _1 = 0.2$ , $\delta _0 = \delta _1 = 1$ , $\hat {c}(0) = 0$ , $\hat {k}_3 (0) = 0$ , $\kappa _1 = 0.02$ , $\kappa _2 = 0.001$ , $r = 0.6$ , ${\pmb \kappa }_3 = 20{\pmb I }_3 $ , ${\pmb \kappa }_4 = 30{\pmb I }_3 $ , $\zeta = 0$ , $T_d = 6.354\, 33$ s.模拟结果如图 4~图 6所示.
数值模拟表明,文中自适应快速终端滑模控制器能很好地控制航天器的位置.如图 4所示,在航天器只携带一个储液腔的情况下,使用自适应快速终端滑模控制器可以很好地控制航天器的姿态使其满足预期要求,并且精度较高.如图 5所示,在航天器携带四个储液腔的情况下,航天器俯仰自旋和液体晃动之间的耦合导致持续不断的俯仰运动. 图 6表明,对自适应快速终端滑模控制器引入ZVD输入整形技术后,刚-液-控耦合问题已被有效地抑制,并且证明本文提出的结合输入整形技术的自适应快速终端滑模控制器的效率和可行性.对于多储液腔航天器,储液腔布局不同必然会对控制器的控制效果产生影响.通过对比,可以认为对于其他储液腔布局的航天器,自适应快速终端滑模控制器结合输入整形技术也可以改进控制效果.
4. 结论和注释
本文设计了自适应快速终端滑模策略和输入整形技术相结合的复合控制器来控制航天器轨道和姿态机动.数值模拟结果表明,如果在设计携带多个储液腔航天器的姿态和轨道控制器时没有充分考虑液体晃动效应,则有可能诱导刚-液-控耦合问题并且导致航天器姿态不稳定.本文提出的输入整形自适应快速终端滑模控制器可以有效抑制多充液腔航天器耦合系统中的俯仰残余振动现象.
-
[1] Dodge FT. The new dynamic behavior of liquids in moving containers. NASA SP-106, Southwest Research Institute, San Antonio, TX, 2000
[2] Ibrahim RA. Liquid Sloshing Dynamics:Theory and Applications. Cambridge:Cambridge University Press, 2005
[3] Abramson HN. Dynamics of contained liquids:a personal odyssey. Applied Mechanics Review, 2003, 56(1):R1 doi: 10.1115/1.1511517
[4] Bang H, Lee JS, Eun YJ. Nonlinear attitude control for a rigid spacecraft by feedback linearization. KSME International Journal, 2004(18):203-210 http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.465.4217
[5] Jin E, Sun Z. Robust controllers design with finite time convergence for rigid spacecraft attitude tracking control. Aerospace Science and Technology, 2008(12):324-330 doi: 10.1061/%28ASCE%29AS.1943-5525.0000597
[6] Du H, Li S. Finite-time attitude stabilization for a spacecraft using homogeneous method. Journal of Guidance, Control and Dynamics, 2012, 35(3):740-749 doi: 10.2514/1.56262
[7] Zhu L, Yue B. Adaptive nonlinear dynamic inversion control for spacecraft attitude filled with fuel. Journal of Dynamics and Control, 2011, 9(4):321-325 https://www.researchgate.net/publication/266327302_Adaptive_nonlinear_dynamic_inversion_for_spacecraft_attitude_control_with_fuel_sloshing
[8] Yang D, Yue B, Zhu L, et al. Analytical method of solving the small amplitude sloshing eigenfrequencies of liquid in cassini tanks. Transactions of Beijing Institute of Technology, 2011, 31(11):1273-1277 http://en.cnki.com.cn/Article_en/CJFDTOTAL-BJLG201111003.htm
[9] Sidi MJ. Spacecraft Dynamics and Control. Cambridge:Cambridge University Press, 1997
[10] Yue BZ, Yan Y. Stability analysis of rigid-liquid-flexible coupling dynamics of spacecraft systems by using the energy-casimir method. Acta Scientiarum Naturalium Universitatis Pekinensis, 2016, 04:1-11 https://www.researchgate.net/publication/306306613_Stability_analysis_of_rigid-liquid-flexible_coupling_dynamics_of_spacecraft_systems_by_using_the_energy-Casimir_method
[11] Deng ML, Yue BZ, Huang H. Study on the equivalent mechanical model for large amplitude slosh. Journal of Astronautics, 2016, 6: 631-638
[12] Song X, Yue BZ, Yan Y, et al. Hybrid control for attitude maneuver of liquid-filled spacecraft with multiple modal liquid sloshing. Journal of Astronautics, 2015, 7:819-825
[13] Wu WJ, Yue BZ, Huang H. Study on the rigid-liquid coupled dynamics for spacecraft with multiple partially liquid-filled cylindrical tanks. Journal of Astronautics, 2015, 6:648-660 https://www.researchgate.net/publication/282921155_Study_on_the_rigid-liquid_coupled_dynamics_for_spacecraft_with_multiple_partially_liquid-filled_cylindrical_tanks
[14] Yue BZ, Wu WJ, Yan Y. Modeling and coupling dynamics of the spacecraft with multiple propellant tanks. AIAA Journal, 2016, 54(11):1-11 https://www.researchgate.net/publication/304067585_Modeling_and_Coupling_Dynamics_of_the_Spacecraft_with_Multiple_Propellant_Tanks
[15] Wu WJ, Yue BZ. Low-gravity liquid sloshing in cylindrical tanks under pitching excitation. Chinese Journal of Theoretical and Applied Mechanics, 2014, 2:284-290 https://www.researchgate.net/publication/290078674_Low-gravity_liquid_sloshing_in_cylindrical_tanks_under_pitching_excitation
[16] Yue B, Yang D, Wu W. Nonlinear coupled dynamics of liquid-filled cylindrical container in microgravity. Journal of Dynamics and Control, 2013, 11(4):306-313 http://en.cnki.com.cn/Article_en/CJFDTOTAL-DLXK201304004.htm
[17] Yang D, Yue BZ. Research on sloshing in axisymmetrical containers under low gravity. Journal of Astronautics, 2013, 34(7):917-925 https://www.researchgate.net/publication/290321709_Research_on_sloshing_in_axisymmetrical_containers_under_low_gravity
[18] Yang D, Yue BZ. Bifurcations of liquid sloshing in cylindrical containers in microgravity condition. Mechanics in Engineering, 2013, 35(2):29-34, 28 http://en.cnki.com.cn/Article_en/CJFDTOTAL-LXYS201302003.htm
[19] Yue BZ, Song XJ. Advances in rigid-flexible-liquid-control coupling dynamics of spacecraft. Advances in Mechanics, 2013, 43(1):163-173 https://www.researchgate.net/publication/287307242_Advances_in_rigid-flexible-liquid-control_coupling_dynamics_of_spacecraft
[20] Yue BZ, Yu D. Research on liquid sloshing characteristics in cassini container in micro-gravity environment. Journal of Dynamics and Control, 2012, 10(1):76-80 http://en.cnki.com.cn/Article_en/CJFDTotal-DLXK201201018.htm
[21] Santo AG, Gold RE, Jr MN, et al. The MES-SENGER mission to Mercury:spacecraft and mission design. Planetary and Space Science, 2001, 49(14-15):1481-1500 doi: 10.1016/S0032-0633(01)00087-3
[22] Zhu Z, Xia Y, Fu M. Attitude stabilization of rigid spacecraft with finite-time convergence. International Journal of Robust and Nonlinear Control, 2011, 21:686-702 doi: 10.1002/rnc.v21.6
[23] Tiwari PM, Janardhanan S, Nabi MU. Rigid spacecraft attitude control using adaptive integral second order sliding mode. Aerospace Science and Technology, 2015, 42:50-57 doi: 10.1016/j.ast.2014.11.017
[24] Yue BZ, Zhu L. Hybrid control of liquid-filled spacecraft maneuvers by dynamic inversion and input shaping. AIAA Journal, 2014, 52: 618-626 doi: 10.2514/1.J052526
[25] Peterson LD, Crawley EF, Hansman RJ. Nonlinear fluid slosh coupled to the dynamics of a spacecraft. AIAA Journal, 1988, 27:1230-1240 https://www.researchgate.net/publication/23575282_Nonlinear_fluid_slosh_coupled_to_the_dynamics_of_a_spacecraft
[26] Dodge FT, Garza LR. Experimental and theoretical studies of liquid sloshing at simulated low gravity. Journal of Applied Mechanics, 1967, 34:555-562 doi: 10.1115/1.3607743
[27] Meirovitch L. Methods of Analytical Dynamics. New York: McGraw-Hill, 1970
[28] Singer N, Seering W. Preshaping command inputs to reduce system vibration. Journal of Dynamics Systems, Measurement, and Control, 1990, 112:76-82 doi: 10.1115/1.2894142
[29] Singhose W, Seering W, Singer N. Residual vibration reduction using vector diagrams to generate shaped inputs. Journal of Mechanical Design, 1994, 116:654-659 doi: 10.1115/1.2919428
[30] Singhose W. Command shaping for flexible systems:a review of the first 50 years. International Journal of Precision Engineering and Manufacturing, 2009, 10:153-160 doi: 10.1007/s12541-009-0084-2
-
期刊类型引用(12)
1. 岳宝增,马伯乐,唐勇,刘峰. 液体大幅晃动情形的航天器刚液耦合动响应仿真分析. 宇航学报. 2022(02): 173-182 . 百度学术
2. 王佐,吴文军,姜丙超,高超南. 球形贮箱内液体横向晃动问题的系统辨识与参数化等效建模. 广西科技大学学报. 2022(03): 1-7 . 百度学术
3. 邓林啸,吕竹勇,王天舒,吕敬. 液体晃动对飞行器控制系统影响分析. 动力学与控制学报. 2021(05): 70-80 . 百度学术
4. 闫玉龙,申云峰,岳宝增. 含板类柔性附件的充液航天器动力学研究. 宇航学报. 2020(05): 531-540 . 百度学术
5. 崔乃刚,吴荣,韦常柱,徐大富. 火箭垂直返回双幂次固定时间收敛滑模控制方法. 哈尔滨工业大学学报. 2020(04): 15-24 . 百度学术
6. 张诗琪,刘锦阳. 基于SPH的充液刚体刚-液耦合动力学建模. 动力学与控制学报. 2020(04): 86-94 . 百度学术
7. 刘峰,岳宝增,马伯乐,申云峰. 燃料消耗下充液航天器等效动力学建模与分析. 力学学报. 2020(05): 1454-1464 . 本站查看
8. 张诗琪,刘锦阳. 考虑刚-液耦合的大幅晃动多体系统动力学建模与分析. 振动与冲击. 2020(18): 109-117 . 百度学术
9. 朱安,陈力. 配置柔顺机构空间机器人双臂捕获卫星操作力学模拟及基于神经网络的全阶滑模避撞柔顺控制. 力学学报. 2019(04): 1156-1169 . 本站查看
10. 李晓玉,岳宝增. 基于多尺度方法的平动圆柱贮箱航天器刚–液耦合动力学研究. 力学学报. 2019(05): 1448-1454 . 本站查看
11. 兰朋,崔雅琦,於祖庆. 完备化ANCF薄板单元及在钢板弹簧动力学建模中的应用. 力学学报. 2018(05): 1156-1167 . 本站查看
12. 林柯成,宋晓娟,吕书锋. 微重力环境下部分充液贮箱内液体晃动特性分析. 内蒙古工业大学学报(自然科学版). 2018(06): 424-430 . 百度学术
其他类型引用(8)