EI、Scopus 收录
中文核心期刊

软体机器人结构机理与驱动材料研究综述

李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙

李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
引用本文: 李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
Citation: Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. DOI: 10.6052/0459-1879-16-159
李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
引用本文: 李铁风, 李国瑞, 梁艺鸣, 程听雨, 杨栩旭, 黄志龙. 软体机器人结构机理与驱动材料研究综述[J]. 力学学报, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159
Citation: Li Tiefeng, Li Guorui, Liang Yiming, Cheng Tingyu, Yang Xuxu, Huang Zhilong. REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 756-766. CSTR: 32045.14.0459-1879-16-159

软体机器人结构机理与驱动材料研究综述

基金项目: 国家自然科学基金资助项目(11572280, 11302190, 11321202).
详细信息
    通讯作者:

    李铁风,副教授,主要研究方向:软物质力学,软体智能材料与结构,软体机器人.E-mail:litiefeng@zju.edu.cn

  • 中图分类号: TP242

REVIEW OF MATERIALS AND STRUCTURES IN SOFT ROBOTICS

  • 摘要: 软体机器人是一类新型机器人,具有结构柔软度高,环境适应性好,亲和性强,功能多样等特点,有着十分广阔的研究和应用前景. 智能材料在软体机器人结构设计及实际应用中扮演了重要的角色,其特殊的驱动机制极大拓展了软体机器人的功能. 介绍了软体机器人的发展和研究现状,按其应用场合及功能总结了几种典型的软体机器人. 从仿生机理的角度,介绍了蠕虫、弯曲爬行虫、鱼类游动等几类仿生运动机理以及其相应的软体机器人. 还按不同驱动类型将软体机器人归纳为气动、形状记忆合金、离子交换聚合物金属复合材料、介电高弹体、响应水凝胶、化学燃烧驱动等类型. 介绍了软体机器人的制作方法与工艺,分析了目前软体机器人研究的主要挑战,提出对未来研究的展望.
    Abstract: Soft robot is a novel category of robotics. Possessing the characteristics of high flexibility, high environmental adaptability, high compatibility and multi-functionality, soft robots are quite promising in research and practical applications. The performances of soft robots are largely enhanced by the unique properties of smart materials, which play a crucial role in the design and application of soft robots. This paper summarizes existing soft robots by their actuating mechanisms and functions into typical categories as worm-like peristaltic moving, caterpillar-like bending actuation, fish-swimming soft robotics. Furthermore, by their actuating mechanisms, soft robots are summarized as air pressure powered, shape memory alloy (SMA), ionic polymer metal composite (IPMC), dielectric elastomer (DE), responsive hydrogel, chemical combustion powered robotics. This paper reviews and discusses the fabricating method, the current challenges and future prospects of soft robots.
  • 1 谭民,王硕. 机器人技术研究进展制. 自动化学报,2013,39(7): 963-972 (Tan Min,Wang Shuo. Research progress on robotics. Acta Automatic Sinica, 2013,39(7):963-972 (in Chinese))
    2 Rus D, Tolley MT. Design, fabrication and control of soft robots. Nature, 2015, 521(7553): 467-475
    3 Brochu P, Pei Q. Advances in dielectric elastomers for actuators and artificial muscles. Macromolecular Rapid Communications, 2010, 31(1): 10-36
    4 Bhandari B, Lee GY, Ahn SH. A review on IPMC material as actuators and sensors: fabrications, characteristics and applications. International Journal of Precision Engineering and Manufacturing, 2012, 13(1): 141-163
    5 Satarkar NS, Biswal D, Hilt JZ. Hydrogel nanocomposites: a review of applications as remote controlled biomaterials. Soft Matter, 2010, 6(11): 2364-2371
    6 Mosadegh B, Polygerinos P, Keplinger C, et al. Pneumatic networks for soft robotics that actuate rapidly. Advanced Functional Materials, 2014, 24(15): 2163-2170
    7 Jani JM, Leary M, Subic A, et al. A review of shape memory alloy research, applications and opportunities. Materials & Design, 2014, 56: 1078-1113
    8 Cai Y, Bi S, Zheng L. Design and experiments of a robotic fish imitating cow-nosed ray. Journal of Bionic Engineering, 2010, 7(2): 120-126
    9 Suzumori K, Endo S, Kanda T, et al. A bending pneumatic rubber actuator realizing soft-bodied manta swimming robot.//Robotics and Automation, 2007 IEEE International Conference on. IEEE, 2007: 4975-4980
    10 Chen Z, Um TI, Bart-Smith H. A novel fabrication of ionic polymer– metal composite membrane actuator capable of 3-dimensional kinematic motions. Sensors and Actuators A: Physical, 2011, 168(1): 131-139
    11 Kim HJ, Song SH, Ahn SH. A turtle-like swimming robot using a smart soft composite (SSC) structure. Smart Materials and Structures, 2012, 22(1): 014007
    12 Song SH, Kim MS, Rodrigue H, et al. Turtle mimetic soft robot with two swimming gaits. Bioinspiration & Biomimetics, 2016, 11(3): 036010
    13 Wang Z, Wang Y, Li J, et al. A micro biomimetic manta ray robot fish actuated by SMA //Robotics and Biomimetics (ROBIO), 2009 IEEE International Conference on. IEEE, 2009: 1809-1813
    14 Hubbard JJ, Fleming M, Palmre V, et al. Monolithic IPMC fins for propulsion and maneuvering in bioinspired underwater robotics. Oceanic Engineering, IEEE Journal, 2014, 39(3): 540-551
    15 Marchese AD, Onal CD, Rus D. Autonomous soft robotic fish capable of escape maneuvers using fluidic elastomer actuators. Soft Robotics, 2014, 1(1): 75-87
    16 Wang Z, Hang G, Wang Y, et al. Embedded SMA wire actuated biomimetic fin: a module for biomimetic underwater propulsion. Smart Materials and Structures, 2008, 17(2): 025039
    17 Shen Q, Wang T, Liang J, et al. Hydrodynamic performance of a biomimetic robotic swimmer actuated by ionic polymer–metal composite. Smart Materials and Structures, 2013, 22(7): 075035
    18 Villanueva A, Smith C, Priya S. A biomimetic robotic jellyfish (Robojelly) actuated by shape memory alloy composite actuators. Bioinspiration & biomimetics, 2011, 6(3): 036004
    19 Shi L, Guo S, Asaka K. A novel jellyfish-like biomimetic microrobot// Complex Medical Engineering (CME), 2010 IEEE/ICME International Conference on. IEEE, 2010: 277-281
    20 Li H, Go G, Ko SY, et al. Magnetic actuated pH-responsive hydrogel-based soft micro-robot for targeted drug delivery. Smart Materials and Structures, 2016, 25(2): 027001
    21 Najem J, Akle B, Sarles SA, et al. Design and development of a biomimetic jellyfish robot that features ionic polymer metal composites actuators //ASME 2011 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2011: 691-698
    22 Seok S, Onal CD, Cho KJ, et al. Meshworm: a peristaltic soft robot with antagonistic nickel titanium coil actuators. Mechatronics, IEEE/ASME Transactions on, 2013, 18(5): 1485-1497
    23 Shepherd RF, Ilievski F, ChoiW, et al. Multigait soft robot. Proceedings of the National Academy of Sciences, 2011, 108(51): 20400-20403
    24 Larson C, Peele B, Li S, et al. Highly stretchable electroluminescent skin for optical signaling and tactile sensing. Science, 2016,351(6277): 1071-1074
    25 Menciassi A, Gorini S, Pernorio G, et al. A SMA actuated artificial earthworm //Proceedings. ICRA'04. 2004 IEEE International Conference on Robotics and Automation, IEEE, 2004, 4: 3282-3287
    26 Jung K, Koo JC, Lee YK, et al. Artificial annelid robot driven by soft actuators. Bioinspiration & Biomimetics, 2007, 2(2): S42
    27 Conn AT, Hinitt AD, Wang P. Soft segmented inchworm robot with dielectric elastomer muscles//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2014: 90562L-90562L-10
    28 Lin HT, Leisk GG, Trimmer B. GoQBot: a caterpillar-inspired softbodied rolling robot. Bioinspiration & Biomimetics, 2011, 6(2): 026007
    29 Nakamaru S, Maeda S, Hara Y, et al. Development of novel selfoscillating gel actuator for achievement of chemical robot// Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ International Conference on. IEEE, 2009: 4319-4324
    30 Du Y, Xu M, Dong E, et al. A novel soft robot with three locomotion modes//Robotics and Biomimetics (ROBIO), 2011 IEEE International Conference on. IEEE, 2011: 98-103
    31 Trimmer BA, Takesian AE, Sweet BM, et al. Caterpillar locomotion: a new model for soft-bodied climbing and burrowing robots//7th International Symposium on Technology and the Mine Problem. Monterey, CA: Mine Warfare Association, 2006, 1: 1-10
    32 Li C, Xie Y, Huang X, et al. Novel dielectric elastomer structure of soft robot//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943021-943021-6
    33 Morales D, Palleau E, Dickey MD, et al. Electro-actuated hydrogel walkers with dual responsive legs. Soft Matter, 2014, 10(9): 1337-1348
    34 Ilievski F, Mazzeo AD, Shepherd RF, et al. Soft robotics for chemists. Angewandte Chemie International Edition, 2011, 50(8): 1890-1895
    35 Martinez RV, Branch JL, Fish CR, et al. Robotic tentacles with three-dimensional mobility based on flexible elastomers. Advanced Materials, 2013, 25(2): 205-212
    36 Brown E, Rodenberg N, Amend J, et al. Universal robotic gripper based on the jamming of granular material. Proceedings of the National Academy of Sciences, 2010, 107(44): 18809-18814
    37 Shintake J, Rosset S, Schubert B, et al. Versatile soft grippers with intrinsic electroadhesion based on multifunctional polymer actuators. Advanced Materials, 2016, 28(2): 231-238
    38 Kofod G, Wirges W, Paajanen M, et al. Energy minimization for self-organized structure formation and actuation. Applied Physics Letters, 2007, 90(8): 081916
    39 Shepherd RF, Stokes AA, Freake J, et al. Using explosions to power a soft robot. Angewandte Chemie International Edition, 2013, 52(10): 2892-2896
    40 Bartlett NW, Tolley MT, Overvelde JTB, et al. A 3D-printed, functionally graded soft robot powered by combustion. Science, 2015, 349(6244): 161-165
    41 Chemical robots squeeze into our future. http://www.nbcnews.com/ id/25479899/ns/technology and science-science/t/chemical-robotssqueeze-our-future/#.Vu4dGip951g
    42 Calisti M, Arienti A, Giannaccini ME, et al. Study and fabrication of bioinspired octopus arm mockups tested on a multipurpose platform// Biomedical Robotics and Biomechatronics (BioRob), 2010 3rd IEEE RAS and EMBS International Conference on. IEEE, 2010: 461-466
    43 Margheri L, Laschi C, Mazzolai B. Soft robotic arm inspired by the octopus: I. From biological functions to artificial requirements. Bioinspiration & Biomimetics, 2012, 7(2): 025004
    44 Mazzolai B, Margheri L, Cianchetti M, et al. Soft-robotic arm inspired by the octopus: II. From artificial requirements to innovative technological solutions. Bioinspiration & Biomimetics, 2012, 7(2): 025005
    45 Martinez RV, Glavan AC, Keplinger C, et al. Soft actuators and robots that are resistant to mechanical damage. Advanced Functional Materials, 2014, 24(20): 3003-3010
    46 Martinez RV, Fish CR, Chen X, et al. Elastomeric origami: programmable paper-elastomer composites as pneumatic actuators. Advanced Functional Materials, 2012, 22(7): 1376-1384.
    47 Chang Y, Kim W. Aquatic ionic-polymer-metal-composite insectile robot with multi-DOF legs. Mechatronics, IEEE/ASME Transactions on, 2013, 18(2): 547-555
    48 Pei Q, Rosenthal M, Stanford S, et al. Multiple-degrees-of-freedom electroelastomer roll actuators. Smart Materials and Structures, 2004, 13(5): N86
    49 Firouzeh A, Ozmaeian M, Alasty A. An IPMC-made deformablering-like robot. Smart Materials and Structures, 2012, 21(6): 065011
    50 Bunget G, Seelecke S. Actuator placement for a bio-inspired bonejoint system based on SMA//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72880L-72880L-12
    51 Colorado J, Barrientos A, Rossi C, et al. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators. Bioinspiration & Biomimetics, 2012, 7(3): 036006
    52 Hara F, Akazawa H, Kobayashi H. Realistic facial expressions by SMA driven face robot//Robot and Human Interactive Communication, 2001. Proceedings. 10th IEEE International Workshop on. IEEE, 2001: 504-511
    53 Tadesse Y, Hong D, Priya S. Twelve degree of freedom baby humanoid head using shape memory alloy actuators. Journal of Mechanisms and Robotics, 2011, 3(1): 011008
    54 Li T, Keplinger C, Baumgartner R, et al. Giant voltage-induced deformation in dielectric elastomers near the verge of snap-through instability. Journal of the Mechanics and Physics of Solids, 2013, 61(2): 611-628
    55 Li T, Qu S, Yang W. Electromechanical and dynamic analyses of tunable dielectric elastomer resonator. International Journal of Solids and Structures, 2012, 49(26): 3754-3761
    56 Choi HR, Jung K, Ryew S, et al. Biomimetic soft actuator: design, modeling, control, and applications. Mechatronics, IEEE/ASME Transactions on, 2005, 10(5): 581-593
    57 Zhao J, Niu J, McCoul D, et al. A rotary joint for a flapping wing actuated by dielectric elastomers: design and experiment. Meccanica, 2015, 50(11): 2815-2824
    58 Branz F, Antonello A, Carron A, et al. Kinematics and control of redundant robotic arm based on dielectric elastomer actuators[ C]//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2015: 943023-943023-13
    59 Kempaiah R, Nie Z. From nature to synthetic systems: shape transformation in soft materials. Journal of Materials Chemistry B, 2014, 2(17): 2357-2368
    60 Lee H, Xia C, Fang NX. First jump of microgel; actuation speed enhancement by elastic instability. Soft Matter, 2010, 6(18): 4342-4345
    61 Cho KJ, Koh JS, Kim S, et al. Review of manufacturing processes for soft biomimetic robots. International Journal of Precision Engineering and Manufacturing, 2009, 10(3): 171-181
    62 Merz R, Prinz FB, Ramaswami K, et al. Shape deposition manufacturing. Engineering Design Research Center, Carnegie Mellon Univ., 1994
    63 Cham JG, Bailey SA, Clark JE, et al. Fast and robust: Hexapedal robots via shape deposition manufacturing. The International Journal of Robotics Research, 2002, 21(10-11): 869-882
    64 Zou Z, Li T, Qu S, et al. Active shape control and phase coexistence of dielectric elastomer membrane with patterned electrodes. Journal of Applied Mechanics, 2014, 81(3): 031016
    65 Lotz P, Matysek M, Schlaak HF. Fabrication and application of miniaturized dielectric elastomer stack actuators. Mechatronics, IEEE/ASME Transactions on, 2011, 16(1): 58-66
    66 Rosset S, Shea HR. Flexible and stretchable electrodes for dielectric elastomer actuators. Applied Physics A, 2013, 110(2): 281-307
    67 Keplinger C, Sun JY, Foo CC, et al. habStretcle, transparent, ionic conductors. Science, 2013, 341(6149): 984-987
    68 Xia Y, Whitesides GM. Soft lithography. Annual Review of Materials Science, 1998, 28(1): 153-184
    69 Umedachi T, Trimmer BA. Design of a 3D-printed soft robot with posture and steering control//Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014: 2874-2879
    70 Umedachi T, Vikas V, Trimmer BA. Highly deformable 3-d printed soft robot generating inching and crawling locomotions with variable friction legs//Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International Conference on. IEEE, 2013: 4590-4595
    71 Rossiter J, Walters P, Stoimenov B. Printing 3D dielectric elastomer actuators for soft robotics//SPIE Smart Structures and Materials+ Nondestructive Evaluation and Health Monitoring. International Society for Optics and Photonics, 2009: 72870H-72870H-10
    72 Carrico JD, Traeden NW, Aureli M, et al. Fused filament 3D printing of ionic polymer-metal composites (IPMCs). Smart Materials and Structures, 2015, 24(12): 125021
    73 Peele BN, Wallin TJ, Zhao H, et al. 3D printing antagonistic systems of artificial muscle using projection stereolithography. Bioinspiration & Biomimetics, 2015, 10(5): 055003
    74 Fang HB, Li SY, Wang KW, et al. Phase coordination and phasevelocity relationship in metameric robot locomotion. Bioinspiration & Biomimetics, 2015, 10(6): 066006
    75 Fang HB, Li SY, Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot-Part A: Modeling and gait generation. Multibody System Dynamics, 2015, 34(4): 391-413
    76 Fang HB, Li SY,Wang KW, et al. A comprehensive study on the locomotion characteristics of a metameric earthworm-like robot: Part B: Gait analysis and experiments. Multibody Dynamics System 2015, 35(2): 153-177
  • 期刊类型引用(63)

    1. 张宇,汪田鸿,金滔,林杨乔,李龙,田应仲,罗均,张泉. 空间连续体机械臂运动学分析与末端控制方法. 机械工程学报. 2025(01): 13-29 . 百度学术
    2. 罗自荣,洪阳,蒋涛,林泽宁,杨云,朱群为. 微型仿生机器人研究现状综述. 机械工程学报. 2025(03): 178-196 . 百度学术
    3. 戴军跃,冯宇,朱明珠. 变刚度软体抓手的建模分析与抓取实验. 高技术通讯. 2025(01): 93-101 . 百度学术
    4. 王昱,陈婉琼,曾山,凡健,孙超,姚凯斌. 基于梯度点阵结构的浆果变刚度柔性夹持机构设计. 华南农业大学学报. 2024(02): 273-279 . 百度学术
    5. 柳胜凯,梅涛,徐文君,孟非,焦健,苏杭. 柔性机械臂的研究现状和发展趋势. 机器人技术与应用. 2024(01): 7-17 . 百度学术
    6. 于猛,程祥,彭世刚,王鹏飞,赵良玉. 柔性触觉反馈驱动器研究进展. 仪器仪表学报. 2024(03): 1-16 . 百度学术
    7. 潘柳羊 ,初文华 ,闫纪峰 ,夏铭遥 ,周巧莉 ,王一博 . 基于改进波动方程的MPF推进模式鲼类游动特性研究. 力学学报. 2024(09): 2762-2774 . 本站查看
    8. 王中义,孙金声,黄贤斌,吕开河. LCST型温度敏感聚合物的研究及其在钻井液领域的应用进展. 精细化工. 2024(10): 2103-2119 . 百度学术
    9. 周泽坤,谢忠坚,初麒,杨艳丽,欧杨,辜松. 嫁接用苗力定位气囊把持手设计与试验. 农机化研究. 2023(05): 191-195 . 百度学术
    10. 尹海斌,薛欢,章志大,李玉峰. 形状记忆合金驱动的仿人腕关节机构理论与运动控制. 机械科学与技术. 2023(02): 181-189 . 百度学术
    11. 岳晓奎,王勇越,朱明珠,汪雪川. 面向空间操作的软体机器人:驱动、建模和感知. 宇航学报. 2023(04): 644-656 . 百度学术
    12. 王林杰. 仿生软体机器人设计的应用与发展研究. 中国设备工程. 2023(12): 26-28 . 百度学术
    13. 周雪,王琳,陈伟,杨文正,郭梓龙. 梯度磁场下变截面硬磁软梁的大变形力学行为. 力学学报. 2023(08): 1699-1710 . 本站查看
    14. 刘杰,李志勇,何俊峰,文桂林,王洪鑫,田阳. TMP折纸防护的双稳态软体机器人. 力学学报. 2023(10): 2331-2343 . 本站查看
    15. 姜淑,蒋美玲,张紫涵,祖语璐,滕丽云. 仿生设计在救援机器人中的应用与发展. 鞋类工艺与设计. 2023(24): 187-189 . 百度学术
    16. 尹耀得,赵德敏,刘建林,许增耀,侯伟. 丙烯酸弹性体的率相关分数阶黏弹性模型研究. 力学学报. 2022(01): 154-162 . 本站查看
    17. 郭健,潘彬彬,崔维成,胡胜兵,韩挚阳. 基于智能材料的深海执行器及海洋仿生机器人研究综述. 船舶力学. 2022(02): 301-313 . 百度学术
    18. 叶俊良,杨岸松,华文博,施浩楠,邹坤洁. 果蔬采摘柔性手爪的研究. 信息记录材料. 2022(02): 230-232 . 百度学术
    19. 雷静,葛正浩,覃兴蒙,张衡,常博. 软体机器人驱动方式与制造工艺研究进展. 微纳电子技术. 2022(06): 505-515+599 . 百度学术
    20. 杨妍,刘志杰,韩江涛,李擎,贺威. 软体机械臂的驱动方式、建模与控制研究进展. 工程科学学报. 2022(12): 2124-2137 . 百度学术
    21. 段罗佳,杨福增,闫彬,史帅旗,秦纪凤. 苹果生产智能底盘与除草及收获装备技术研究进展. 智慧农业(中英文). 2022(03): 24-41 . 百度学术
    22. 郝天泽,肖华平,刘书海,张超,马豪. 集成化智能软体机器人研究进展. 浙江大学学报(工学版). 2021(02): 229-243 . 百度学术
    23. 张亚琪,周邦达,马小龙,蔡世波,鲍官军. 人手操作目标物体过程运动轨迹的规律研究. 高技术通讯. 2021(04): 417-424 . 百度学术
    24. 马林坡,潘雪荧,王永娟,范丽萍. 含柔性腹节的仿蚕机器人转弯运动建模与实验. 兵器装备工程学报. 2021(05): 221-226 . 百度学术
    25. 邢志广,林俊,赵建文. 人工肌肉驱动器研究进展综述. 机械工程学报. 2021(09): 1-11 . 百度学术
    26. 王慧. 一种防碰撞产品气动手爪设计. 建材技术与应用. 2021(03): 45-47 . 百度学术
    27. 闫茜茜,何田. 一种基于介电弹性体驱动的软体机器人设计方法. 青岛大学学报(工程技术版). 2021(03): 1-5 . 百度学术
    28. 马丛俊,赵涛,向国菲,任江涛,陈元科,佃松宜. 基于逆运动学的柔性机械臂末端定位控制. 机械工程学报. 2021(13): 163-171 . 百度学术
    29. 胡俊峰,林茂虎,王文慧. 微型仿尺蠖软体机器人的设计与实验. 传感器与微系统. 2021(08): 106-109 . 百度学术
    30. 李润,李亨,王可胜,姜心成. 石墨烯驱动器的设计及性能研究. 科技视界. 2021(23): 192-194 . 百度学术
    31. 田亮,韩奉林,李明辉,刘伟,严宏志. 网格结构对Pneu-Net软体驱动器的弯曲性能影响规律研究. 制造业自动化. 2021(09): 24-29+74 . 百度学术
    32. 吴越. 软体驱动器的设计制作和仿真分析. 科技与创新. 2021(21): 36-37 . 百度学术
    33. 牛丽周,丁亮,高海波,杨怀广,苏杨,李楠. 软体足式机器人驱动、建模与仿真研究综述. 机械工程学报. 2021(19): 1-20 . 百度学术
    34. 顾苏程,王保兴,刘俊辰,李巍,曹毅. 纤维增强型软体夹持器变形及末端接触力. 北京航空航天大学学报. 2020(02): 447-456 . 百度学术
    35. 董虎,王保兴,李巍,曹毅. 基于单向气动驱动器的软体手变形机理. 东华大学学报(自然科学版). 2020(02): 288-296+303 . 百度学术
    36. 陈凌峰,张亚琪,马小龙,蔡世波,鲍官军. 面向软体多指手的指尖接触力学建模. 高技术通讯. 2020(04): 391-401 . 百度学术
    37. 陈阳,徐晓丹,李向攀. 基于Arduino控制的气动软体仿生四足机器人结构设计及步态规划. 液压与气动. 2020(05): 86-90 . 百度学术
    38. 谢胜龙,张文欣,鲁玉军,张为民,朱俊江,林立,任国营. 气动肌肉的最小二乘支持向量机迟滞模型. 计量学报. 2020(04): 441-447 . 百度学术
    39. 范需,戴宁,王宏涛,丁龙伟,谢绍辉. 气动网格软体驱动器弯曲变形预测方法. 中国机械工程. 2020(09): 1108-1114 . 百度学术
    40. 吴枫,韩亚丽,李沈炎,糜章章,周伟杰. 柔性仿生驱动器研究综述. 现代制造工程. 2020(07): 146-156 . 百度学术
    41. 管清华,孙健,刘彦菊,冷劲松. 气动软体机器人发展现状与趋势. 中国科学:技术科学. 2020(07): 897-934 . 百度学术
    42. 李博,孙文杰,姜磊,马付雷,陈贵敏. 电活性双稳态机构及其在软体机器人中应用的研究进展. 机械工程学报. 2020(19): 43-52 . 百度学术
    43. 徐聪,闫英博,刘思雨,诸骏,刘益伦,吴化平. 基于压电振动驱动的快速旋转软体驱动器. 科学通报. 2020(32): 3585-3592 . 百度学术
    44. 李文朔,弓永军,陈英龙,赵佳莹. 基于Neo-Hookean模型的软体机械臂变曲率运动学建模研究. 组合机床与自动化加工技术. 2020(12): 31-34 . 百度学术
    45. 刘学婧,贾书海,李博,陈花玲. 介电弹性体驱动器动态电压下的变形特征及击穿行为研究. 西安交通大学学报. 2019(02): 9-15+127 . 百度学术
    46. 姚建涛,陈新博,陈俊涛,张弘,李海利,赵永生. 轮足式仿生软体机器人设计与运动分析. 机械工程学报. 2019(05): 27-35 . 百度学术
    47. 常龙飞,李超群,牛清正,杨倩,胡小品,何青松,吴玉程. IPMC驱动柔性机器鱼速度控制系统. 水下无人系统学报. 2019(02): 157-165 . 百度学术
    48. 鲍官军,张亚琪,许宗贵,蔡世波,胥芳,杨庆华,张立彬. 软体机器人气压驱动结构研究综述. 高技术通讯. 2019(05): 467-479 . 百度学术
    49. 杨健鹏,王惠明. 功能梯度球形水凝胶的化学力学耦合分析. 力学学报. 2019(04): 1054-1063 . 本站查看
    50. 徐凯,刘欢. 多杆连续体机构:构型与应用. 机械工程学报. 2018(13): 25-33 . 百度学术
    51. 张秋菊,张进,孙沂琳. 食品机器人末端执行器研究现状与展望. 机械设计与制造工程. 2018(05): 1-8 . 百度学术
    52. 徐丰羽,郭义全,周映江,吴明亮,宋玉蓉. 软体机器人的驱动器及制作方法研究综述. 南京邮电大学学报(自然科学版). 2018(04): 69-80 . 百度学术
    53. 彭艳,刘勇敢,杨扬,杨毅,刘娜,孙翊. 软体机械手爪在果蔬采摘中的应用研究进展. 农业工程学报. 2018(09): 11-20 . 百度学术
    54. 陈煜宇,刘磊,李博,魏超,王树新,李涤尘. 柔性驱动与刚度可调结构/功能一体化微创手术操作臂设计制造与性能研究. 机械工程学报. 2018(17): 53-61 . 百度学术
    55. 张忠强,邹娇,丁建宁,宋振玲,程广贵,王晓东,郭立强. 软体机器人驱动研究现状. 机器人. 2018(05): 648-659 . 百度学术
    56. 葛锦程,汤磊,谷国迎,朱利民. 绳驱动软体操作臂的建模与控制技术研究. 机电一体化. 2018(05): 3-10+16 . 百度学术
    57. 饶一帆,仲政. 反应诱导聚合物双层结构弯曲行为的建模与分析. 力学季刊. 2018(03): 475-485 . 百度学术
    58. 宋波,卓林蓉,温银堂,梁波,赵清亮,贺健康,张述泉,闫春泽,史玉升. 4D打印技术的现状与未来. 电加工与模具. 2018(06): 1-7+30 . 百度学术
    59. 陈花玲,罗斌,朱子才,李博. 4D打印:智能材料与结构增材制造技术的研究进展. 西安交通大学学报. 2018(02): 1-12 . 百度学术
    60. Haiyan Hu,Qiang Tian,Cheng Liu. Computational dynamics of soft machines. Acta Mechanica Sinica. 2017(03): 516-528 . 必应学术
    61. 田强,刘铖,李培,胡海岩. 多柔体系统动力学研究进展与挑战. 动力学与控制学报. 2017(05): 385-405 . 百度学术
    62. 傅珂杰,曹许诺,张桢,刘先卫,李国瑞,梁艺鸣,李铁风. 水下软体机器人柔性驱动方式及其仿生运动机理研究进展. 科技导报. 2017(18): 44-51 . 百度学术
    63. 张敏,徐鉴. 振动驱动移动系统平面避障运动分析. 力学学报. 2017(02): 397-409 . 本站查看

    其他类型引用(172)

计量
  • 文章访问数:  4328
  • HTML全文浏览量:  1407
  • PDF下载量:  2253
  • 被引次数: 235
出版历程
  • 收稿日期:  2016-06-05
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回