EI、Scopus 收录
中文核心期刊

集成单元边界元法及其在主动冷却热防护系统分析中的应用

高效伟, 刘健, 彭海峰

高效伟, 刘健, 彭海峰. 集成单元边界元法及其在主动冷却热防护系统分析中的应用[J]. 力学学报, 2016, 48(4): 994-1003. DOI: 10.6052/0459-1879-15-437
引用本文: 高效伟, 刘健, 彭海峰. 集成单元边界元法及其在主动冷却热防护系统分析中的应用[J]. 力学学报, 2016, 48(4): 994-1003. DOI: 10.6052/0459-1879-15-437
Gao Xiaowei, Liu Jian, Peng Haifeng. INTEGRATED UNIT BEM AND ITS APPLICATION IN ANALYSIS OF ACTIVELY COOLING TPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 994-1003. DOI: 10.6052/0459-1879-15-437
Citation: Gao Xiaowei, Liu Jian, Peng Haifeng. INTEGRATED UNIT BEM AND ITS APPLICATION IN ANALYSIS OF ACTIVELY COOLING TPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 994-1003. DOI: 10.6052/0459-1879-15-437
高效伟, 刘健, 彭海峰. 集成单元边界元法及其在主动冷却热防护系统分析中的应用[J]. 力学学报, 2016, 48(4): 994-1003. CSTR: 32045.14.0459-1879-15-437
引用本文: 高效伟, 刘健, 彭海峰. 集成单元边界元法及其在主动冷却热防护系统分析中的应用[J]. 力学学报, 2016, 48(4): 994-1003. CSTR: 32045.14.0459-1879-15-437
Gao Xiaowei, Liu Jian, Peng Haifeng. INTEGRATED UNIT BEM AND ITS APPLICATION IN ANALYSIS OF ACTIVELY COOLING TPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 994-1003. CSTR: 32045.14.0459-1879-15-437
Citation: Gao Xiaowei, Liu Jian, Peng Haifeng. INTEGRATED UNIT BEM AND ITS APPLICATION IN ANALYSIS OF ACTIVELY COOLING TPS[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 994-1003. CSTR: 32045.14.0459-1879-15-437

集成单元边界元法及其在主动冷却热防护系统分析中的应用

基金项目: 国家自然科学基金资助项目(11172055).
详细信息
    通讯作者:

    高效伟,教授,主要研究方向:计算力学,边界单元法.E-mail:xwgao@dlut.edu.cn

  • 中图分类号: V231.1

INTEGRATED UNIT BEM AND ITS APPLICATION IN ANALYSIS OF ACTIVELY COOLING TPS

  • 摘要: 随着高超声速飞行器的快速发展,飞行器及发动机所面临的热防护压力越来越大. 传统的被动热防护系统已很难满足设计要求,因此主动冷却热防护系统受到了越来越多的关注. 主动冷却热防护系统因为管道密布、结构复杂,传统的分析方法需要花费大量的精力和时间来建模和计算分析. 针对管道阵列排布的主动冷却系统,提出了一种用边界元法求解空间周期性结构的集成单元法,并将其用来分析具有冷却通道的热防护系统的传热与受力变形问题. 此方法求解空间周期性结构问题,仅需要针对一个胞元建立边界元胞元方程,并由其形成由指定胞元数组成的集成单元,然后由集成单元组集成总体系统方程组. 提出的集成单元法既有常规子结构法的消元思想,又有传统有限单元、边界单元易于组集的特征,便于大型空间周期性结构的快速分析. 由于集成单元的系数矩阵只需形成一次,且最终方程只含边界节点未知量,计算效率显著提高. 论文最后用功能梯度平板和主动冷却燃烧室算例验证了本文所述算法的正确性和计算效率.
    Abstract: With the fast development of hypersonic aircrafts, the traditional passive thermal protection system (TPS) can't a ord the increasing demand of the thermal protection for aircrafts and engines. As a result, the actively cooling TPS has received more and more attentions. The commonly used technologies do require a substantially much more time due to the complexity of the structures. In this paper, the integrated unit method is proposed for solving spatially periodical structural problems using the boundary element method (BEM) and it is used to solve the thermal and mechanical problems appearing in the TPS with actively cooling channels. In this method, the BEM cell equation only needs to be established for one computational cell and the integrated unit can be formed by a specified number of cell equations. The equations of final system can be formed by the integrated unit equations. The proposed integrated unit method inherits the variableelimination idea of the sub-structure technique and assimilates the easy assembling characteristic of the conventional finite and boundary elements, and therefore is suitable for fast analysis of large-scale spatially periodical structural problems. As the coefficient matrices of the integrated unit only needs to be established once and the equations of final system only includes boundary nodal variables, the computational efficiency can be improved considerably. Three numerical examples for actively cooling combustors of scramjet engine are given to demonstrate the computational accuracy and efficiency of the proposed method.
  • 1 黄伟, 罗世彬, 王振国. 临近空间高超声速飞行器关键技术及展望. 宇航学报, 2010, 31(5): 1259-1265 (Huang Wei, Luo Shibin, Wang Zhen guo. Key techniques and prospect of near-space hypersonic vehicle. Journal of Astronautics, 2010, 31(5): 1259-1265 (in Chinese))
    2 王振国, 梁剑寒, 丁猛等. 高超声速飞行器动力系统研究进展. 力学进展, 2009, 39(6): 716-739 (Wang Zhenguo, Liang Jianhan, Ding Meng, et al. A review on hypersonic air-breathing propulsion system. Advances in Mechanics, 2009, 39(6): 716-739 (in Chinese))
    3 刘兴洲. 中国超燃冲压发动机研究回顾. 推进技术, 2008, 29(4): 385-395 (Liu Xingzhou. Review of scramjet research in China. Journal of Propulsion Technology, 2008, 29(4): 385-395 (in Chinese))
    4 韩洪涛, 王友利. 2013 年国外高超声速技术发展回顾. 中国航天, 2014, 03: 16-20 (Han Hongtao,Wang Youli. Review of overseas hypersonic technology development in 2013. Aerospace China, 2014, 03: 16-20 (in Chinese))
    5 牛文, 李文杰, 胡冬冬等. 2014 年国外高超声速技术发展动态回顾. 飞航导弹, 2015, 01: 27-34 (Niu Wen, Li Wenjie, Hu Dongdong, et al. Review of overseas hypersonic technology development in 2014. Aerodynamic Missile Journal, 2015, 01: 27-34 (in Chinese))
    6 贺武生. 超燃冲压发动机研究综述. 火箭推进, 2005, 31(1): 29-32 (He Wusheng. Review of scramjet engine development. Journal of Rocket Propulsion, 2005, 31(1): 29-32 (in Chinese))
    7 Thermal-structural design study of an airframe-integrated scramjet finial report. NASA CR 159039,1980
    8 肖红雨, 高峰, 李宁. 再生冷却技术在超燃冲压发动机中的应用与发展. 飞航导弹, 2013, 8(8): 78-81 (Xiao Hongyu, Gao feng, Li Ning. Application and development of regenerative cooling technology in scramjet. Aerodynamic Missile Journal, 2013, 8(8): 78-81 (in Chinese))
    9 任加万, 谭永华. 冲压发动机燃烧室热防护技术. 火箭推进, 2006, 32(4): 38-42 (Ren Jiawan, Tan Yonghua. Thermal protection techniques of ramjet combustor. Journal of Rocket Propulsion, 2006, 32(4): 38-42 (in Chinese))
    10 刘世俭,刘兴洲. 超燃冲压发动机可贮存碳氢燃料再生主动冷却换热过程分析. 飞航导弹, 2009, 3(3): 48-52 (Liu Shijian, Liu Xingzhou. Analysis of scramjet hydrocarbon fuel storage regeneration active cooling heat transfer process. Aerodynamic Missile Journal, 2009, 3(3): 48-52 (in Chinese))
    11 仲峰泉,范学军,俞刚. 带主动冷却的超声速燃烧室传热分析. 推进技术, 2009, 30(5): 513-517 (Zhong Fengquan, Fan Xuejun, Yu Gang. Heat transfer analysis for actively cooled supersonic combustor. Journal of Propulsion Technology, 2009, 30(5): 513-517 (in Chinese))
    12 王勖成. 有限单元法. 北京: 清华大学出版社, 2003 (Wang Xucheng. Finite Element Method. Beijing: Tsinghua University Press, 2003(in Chinese))
    13 Zienkiewicz OC, Taylor RL. The Finite Element Method. Butterworth-Heinemann, 2000
    14 Liu GR, Quek SS. The Finite Element Method: A Practical Course. Elsevier, 2013
    15 Richtmyer RD, Morton KW. Difference Methods for Initial-Value Problems, New York, Banerjee PK, 1967
    16 Mitchell AR, Griffiths DF. The finite difference method in partial differential equations//Mitchell AR, Griffiths DF. AWiley-Interscience Publication, 1980, 43(1): S76–S78
    17 Becker AA. The Boundary Element Method in Engineering. London: McGraw –Hill Book Co.,1992
    18 Brebbia CA, Dominguez J. Boundary Elements: An Introductory Course. Southampton and Boston: Comput. Mech. Publicatons and Mc Graw-Hill Book Co.,1992
    19 Beer G, Smith I, Duenser C. The Boundary Element Method with Programming. Wien: Springer-Verlag, 2008
    20 Gao XW, Davies TG. Boundary Element Programming in Mechanics. Cambridge, Cambridge University Press, 2002
    21 Tanaka M, Sladek V, Sladek J. Regularization techniques applied to boundary element methods. Appl. Mech. Rev, 1994, 47: 457-499
    22 Beer G. Programming the Boundary Element Method. An Introduction for Engineers. Chichester, John Wiley & Sons, Ltd, 2001
    23 Gao X W, Guo L, Zhang C. Three-step multi-domain BEM solver for nonhomogeneous material problems. Engineering Analysis with Boundary Elements, 2007, 31(12): 965-973
    24 王永岩. 动态子结构方法理论及应用. 科学出版社,1999 (Wang Yongyan. Theory and Application of Dynamic Substructure Method. Science Press, 1999 (in Chinese))
    25 Liu J, Peng HF, Gao XW, et al. A traction-recovery method for evaluating boundary stresses on thermal elasticity problems of FGMs. Engineering Analysis with Boundary Elements, 2015, 61: 226-231
    26 高效伟,杨恺. 功能梯度材料结构的热应力边界元分析. 力学学报, 2011, 43(1), 136-143 (Gao Xiaowei, Yang Kai. Thermal stress analysis of functionally graded material structures using boundary element method. Chinese Journal of Theoretical and Applied Mechnics, 2011, 43: 136-143 (in Chinese))
    27 Gao XW. The radial integration method for evaluation of domain integrals with boundary-only discretization. Engineering Analysis with Boundary Elements, 2002, 26: 905-916
    28 Przemieniecki JS. Theory of Matrix Structural Analysis. New York: Dover Publications, 2001
    29 王刚, 齐朝晖, 汪菁. 含铰接杆系结构几何非线性分析子结构方法. 力学学报, 2014, 46(2): 273-283 (Wang Gang, Qi Zhaohui, Wang Jing. Substructure methods of geometric nonlinear analysis for member structures with hinged supports. Chinese Journal of Theoretical and Applied Mechnics, 2014, 46(2): 273-283 (in Chinese))
    30 黄筑平. 连续介质力学基础. 北京: 高等教育出版社, 2004 (Huang Zhuping. The Basis of Continuum Mechanics. Beijing: Higher Education Press, 2004 (in Chinese))
    31 黄克智, 薛明德, 陆明万. 张量分析. 清华大学出版社, 2003 (Huang Kezhi, Xue Mingde, Lu Mingwan. Tensor Analysis. Tsinghua University Press, 2003 (in Chinese))
  • 期刊类型引用(6)

    1. 都凯,任彦强,侯勇,李小强,陈帅峰,孙亮,左晓姣,袁晓光. 精确预测近平面应变载荷下各向异性行为的屈服准则参数识别策略. 中国机械工程. 2023(19): 2381-2393 . 百度学术
    2. 王海波,肖旭,阎昱,李强,何东. 流动法则和屈服准则对板料成形极限预测的影响. 塑性工程学报. 2022(03): 157-165 . 百度学术
    3. 方刚,陈祝,雷丽萍. 非关联本构模型在铝合金板料成形有限元模拟中的应用. 塑性工程学报. 2021(06): 8-18 . 百度学术
    4. 贾然,赵桂平. 泡沫铝本构行为研究进展. 力学学报. 2020(03): 603-622 . 本站查看
    5. 陶文斌,陈铁林,张群,王泽军,王荣鑫. 考虑非均匀应力场巷道弹塑性分区的锚杆力学分析. 吉林大学学报(工学版). 2020(06): 2131-2140 . 百度学术
    6. Haibo Wang,Mingliang Men,Yu Yan,Min Wan,Qiang Li. Prediction of Eight Earings in Deep Drawing of 5754O Aluminum Alloy Sheet. Chinese Journal of Mechanical Engineering. 2019(05): 146-154 . 必应学术

    其他类型引用(5)

计量
  • 文章访问数:  844
  • HTML全文浏览量:  111
  • PDF下载量:  1100
  • 被引次数: 11
出版历程
  • 收稿日期:  2015-12-03
  • 修回日期:  2016-01-24
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回