EI、Scopus 收录
中文核心期刊

复杂加载下混凝土的弹塑性本构模型

万征, 姚仰平, 孟达

万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型[J]. 力学学报, 2016, 48(5): 1159-1171. DOI: 10.6052/0459-1879-15-389
引用本文: 万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型[J]. 力学学报, 2016, 48(5): 1159-1171. DOI: 10.6052/0459-1879-15-389
Wan Zheng, Yao Yangping, Meng Da. AN ELASTOPLASTIC CONSTITUTIVE MODEL OF CONCRETE UNDER COMPLICATED LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1159-1171. DOI: 10.6052/0459-1879-15-389
Citation: Wan Zheng, Yao Yangping, Meng Da. AN ELASTOPLASTIC CONSTITUTIVE MODEL OF CONCRETE UNDER COMPLICATED LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1159-1171. DOI: 10.6052/0459-1879-15-389
万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型[J]. 力学学报, 2016, 48(5): 1159-1171. CSTR: 32045.14.0459-1879-15-389
引用本文: 万征, 姚仰平, 孟达. 复杂加载下混凝土的弹塑性本构模型[J]. 力学学报, 2016, 48(5): 1159-1171. CSTR: 32045.14.0459-1879-15-389
Wan Zheng, Yao Yangping, Meng Da. AN ELASTOPLASTIC CONSTITUTIVE MODEL OF CONCRETE UNDER COMPLICATED LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1159-1171. CSTR: 32045.14.0459-1879-15-389
Citation: Wan Zheng, Yao Yangping, Meng Da. AN ELASTOPLASTIC CONSTITUTIVE MODEL OF CONCRETE UNDER COMPLICATED LOAD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1159-1171. CSTR: 32045.14.0459-1879-15-389

复杂加载下混凝土的弹塑性本构模型

基金项目: 国家自然科学青年基金(11402260),国家自然科学基金(11272031,51274185)和中国建筑科学研究院青年基金(20141602331030072)资助项目.
详细信息
    通讯作者:

    万征,副研究员,主要研究方向:地下结构与土相互作用,混凝土及土的本构关系.E-mail:zhengw111@126.com

  • 中图分类号: TU43

AN ELASTOPLASTIC CONSTITUTIVE MODEL OF CONCRETE UNDER COMPLICATED LOAD

  • 摘要: 混凝土材料在不同应力路径下或复杂加载条件下会表现出差异性显著的应力应变关系,在小幅循环加载条件下,其应力应变关系会表现出类似于弹性变形的滞回曲线.在不同应力水平下,混凝土的应力应变关系以及破坏特性都具有静水压力相关特点,即随着静水压力增大,各向异性强度特性弱化.此外,混凝土受压及受拉破坏机理不同,因而对应于混凝土硬化损伤亦有不同,即可分为受压硬化损伤,受拉硬化损伤及两者的混合硬化损伤类型.基于Hsieh模型,对该模型进行了三点改进.(1)针对小幅循环加载下混凝土无塑性变形的试验规律,而模型中在应力水平较低的循环加载条件下始终存在塑性变形的预测问题,采用在边界面模型框架下,设置了应力空间的弹性域,初始屈服面与后续临界状态屈服面几何相似的假定.(2)基于广义非线性强度准则将原模型采用变换应力方法将其推广为三维弹塑性本构模型,采用变换后模型可合理的考虑不同应力路径对于子午面以及偏平面上静水压力效应形成的影响,并避免了边界面应力点奇异问题.(3)分别对拉压两种加载损伤模式建议了相应的硬化参数表达式,可分别用于描述上述加载中产生的应变软化及强度退化行为.基于多种加载路径模拟表明:所建立的三维弹塑性本构模型可合理地用于描述混凝土的一般应力应变关系特性.
    Abstract: A prominent variety of stress-strain relationships are displayed for concrete under different stress paths or complex loading conditions. A stress-strain relationship similar to the elastic deformation of the hysteresis loops is observed under a small amplitude of deviatoric stress. The stress-strain relationship and failure behavior are associated with the value of hydrostatic pressure under different stress paths. The prominent of anisotropic behavior is weakening with increasing the value of hydrostatic pressure. In addition, the failure mechanisms and the corresponding hardening damage processes of compression and tension, are all different. There are three hardening damage types, namely the compressive hardening damage, tensile hardening damage and the mixing hardening damage. A new model is proposed by revising Hsieh model at three aspects:(1) There is not plastic deformation for small amplitude of deviatoric stress under cyclic loading conditions, while there is always plastic deformation predicted by Hsieh model. The frame of bounding surface model is adopted and a pure elastic zone is established in the bounding surface. The assumption that the initial yield surface and subsequent critical yield surface is similar in geometry is adopted. (2) A generalized constitutive model is proposed by transformed stress method based on generalized nonlinear strength criterion. The hydrostatic pressure effect of meridian plane and deviatoric plane for different stress paths can be reasonably considered by adopting the proposed model. A problem of singular stress point on boundary surface is avoided by adopting the TS method. (3) Hardening parameter expressions based on two kinds of load in tension and compression damage pattern are proposed and can be respectively adopted to describe the strain softening and strength degradation behavior generated by loading process. The proposed model can be used to describe the general stress-strain relationship of concrete based on a variety of loading tests simulation.
  • 1 David Z, Hans WR. Model for cyclic compressive behavior of concrete. Journal of Engineering Mechanics, ASCE, 1987, 113(2):228-240
    2 Kupfer HB, Gerstle KH. Behavior of concrete under biaxial stresses. Journal of Engineering Mechanics, ASCE, 1973, 99(4):853-866
    3 过镇海, 王传志, 张秀琴. 多轴应力下混凝土的强度和破坏准则研究. 土木工程学报, 1991, 24(3):1-14(Guo Zhenhai, Wang Chuanzhi, Zhang Xiuqin. Investigation of strength and failure criterion of concrete under multi-axial stresses. China Civil Engineering Journal, 1991, 24(3):1-14(in Chinese))
    4 杨木秋, 林泓. 混凝土单轴受压受拉应力-应变全曲线的试验研究. 水利学报, 1992(6):60-66(Yang Muqiu, Lin Hong. Full curves of experimental research for concrete under uniaxial compression and tension conditions. Journal of Hydraulic Engineering, 1992(6):60-66(in Chinese))
    5 宋玉普. 多种混凝土材料的本构关系和破坏准则. 北京:中国水利水电出版社, 2002(Song Yupu. A Variety of Concrete Material Constitutive Relation and Failure Criterion. Beijing:China Water and Power Press, 2002(in Chinese))
    6 俞茂宏, 赵坚, 关令苇. 岩石、混凝土强度理论:历史、现状、发展. 自然科学进展, 1997(6):653-660(Yu Maohong, Zhao Jian, Guan Lingwei. Rock, concrete strength theory:history, status quo and development. Progress in Natural Science, 1997(6):653-660(in Chinese))
    7 钱在兹, 钱春. 混凝土复杂受力状态下的统一强度准则. 土木工程学报, 1996, 29(2):46-55(Qian Zaizi, Qian Chun. Unified strength criterion of concrete under multiaxial loading conditions. China Civil Engineering Journal, 1996, 29(2):46-55(in Chinese))
    8 王传志, 过镇海, 张秀琴. 二轴和三轴受压混凝土的强度试验. 土木工程学报, 1987, 20(1):15-26(Wang Chuanzhi, Guo Zhenhai, Zhang Xiuqin. Experimental investigation of concrete strength under biaxial and triaxial compressive stresses. China Civil Engineering Journal, 1987, 20(1):15-26(in Chinese))
    9 彭放. 复杂应力状态下多种混凝土的破坏准则及本构模型研究.[博士论文]. 大连:大连理工大学, 1990(Peng Fang. The failure criterion and constitutive model for variety of concretes under complicated stress state.[PhD Thesis]. Dalian:Dalian University of Technology, 1990(in Chinese))
    10 路德春, 杜修力, 闫静茹等. 混凝土材料三维弹塑性本构模型. 中国科学E辑:技术科学, 2014, 44(8):847-860(Lu Dechun, Du Xiuli, Yan Jingru, et al. A three-dimensional elastoplastic constitutive model for concrete. Science in China (SerE), 2014, 44(8):847-860(in Chinese))
    11 郑付刚, 吴中如, 顾冲时等. 混凝土结构裂缝的双标量塑性损伤模型. 中国科学E辑:技术科学, 2012, 42(12):1430-1439(Zheng Fugang, Wu Zhongru, Gu Chongshi, et al. A plastic damage model for concrete structure cracks with two damage variables. Science in China(SerE), 2012, 42(12):1430-1439(in Chinese))
    12 王怀亮, 任玉清, 宋玉普. 基于黏塑性理论的碾压混凝土动态剪切本构模型. 工程力学, 2014, 31(9):120-125(Wang Huailiang, Ren Yuqing, Song Yupu. Dynamic shear constitutive model of RCC interface based on viscoplasticity theory. Engineering Mechanics, 2014, 31(9):120-125(in Chinese))
    13 Bazant ZP, Caner FC. Microplane model M4 for concrete I:Formulation with work conjugate deviatoric stress. Journal of Engineering Mechanics, ASCE, 2000, 126(9):944-953
    14 Bazant ZP, Carol I, Adley M, et al. Microplane model M4 for concrete:I formulation with work-conjugate deviatoric stress. Journal of Engineering Mechanics, ASCE, 2000, 126:944-954
    15 Hsieh SS, Ting EC, Chen WF. A plastic-fracture model for concrete. International Journal of Solids and Structures, 1982, 18(3):181-197
    16 Sparks PR. The influence of rate of loading and material variability on the fatigue characteristics of concrete. ACI Publication SP-75, 1982, 331-343
    17 林燕清. 混凝土疲劳累积损伤与力学性能劣化研究.[博士论文]. 哈尔滨:哈尔滨建筑大学, 1998(Lin Yanqing. The research of concrete fatigue cumulative damage and degradation of mechanical performance.[PhD Thesis]. Harbin:Harbin University of Civil Engineering and Architecture, 1998(in Chinese))
    18 Tasuji ME, Slate FO, Nilson AH. Stress-strain response and fracture of concrete in biaxial loading. ACI Journal, 1978, 75(7):306-312
    19 Mills LL, Zimmerman RM. Compressive strength of plain concrete under multiaxial loading conditions. ACI Journal, 1970, 67(10):802-807
    20 Launay P, Gachon H. Strain and ultimate strength of concrete under triaxial stresses. Special Publication, SP-34, ACI Journal, 1970, I:269-282
    21 Gerstle KH, Linse DH, Paolo Bertacchi MD. Strength of concrete under multi-axial stress states. In:Proc, McHenry Symposium on Concrete and Concrete Structures, Special Publication, SP55, ACI Joural, 1978, 103-131
    22 Kupfer H, Hilesdorf H K, Rusch H. Behavior of concrete under biaxial stress. ACI Structure Journals, 1969, 66(2):656-666
    23 Gerstle KH. Simple formulation of biaxial concrete behavior. ACI Structure Journals, 1981, 78(1):62-68
    24 Karsan ID, Jirsa JO. Behavior of concrete under compressive loadings. Journal of the Structural Division, ASCE, 1969, 95(12):2543-2563
    25 Chen ES, Buyukozturk O. Constitutive model for concrete in cyclic compression. Journal of Engineering Mechanics, ASCE, 1985, 111(6):797-814
    26 Winnicki A, Cichon C. Plastic model for concrete in plane stress state.Ⅱ:Numerical validation. Journal of Engineering Mechanics, ASCE, 1998, 124(6):603-613
    27 Yao YP, Lu DC, Zhou AN, et al. Generalized non-linear strength theory and transformed stress space. Science in China (SerE), 2004, 47(6):691-709
    28 Yao YP, Zhou AN, Lu DC. Extended transformed stress space for geomaterials and its application. Journal of Engineering Mechanics, ASCE, 2007, 133(10):1115-1123
    29 姚仰平, 路德春, 周安楠等. 广义非线性强度理论及其变换应力空间. 中国科学E辑:技术科学, 2004, 34(11):1283-1299(Yao Yangping, Lu Dechun, Zhou Annan, et al. Generalized non-linear strength theory and transformed stress space. Science in China (SerE), 2004, 34(11):1283-1299(in Chinese))
    30 路德春, 江强, 姚仰平. 广义非线性强度理论在岩石材料中的应用. 力学学报, 2005, 37(6):729-736. (Lu Dechun, Jiang Qiang, Yao Yangping. Generalized nonlinear strength theory for rock materials. Chinese Journal of Theoretical and Applied Mechanics, 2005, 37(6):729-736(in Chinese))
    31 万征, 姚仰平. 考虑压剪耦合特性的岩土材料广义非线性屈服准则. 岩石力学与工程学报, 2014, 33(2):376-389(Wan Zheng, Yao Yangping. A new generalized nonlinear yield criterion fro geomaterials considering coupling behavior or shearing and compression. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(2):376-389(in Chinese))
    32 Imran I, Pantazopoulou SJ. Plasticity model for concrete under triaxial compressions. Journal of Engineering Mechanics, ASCE, 2001, 127:281-290
  • 期刊类型引用(12)

    1. 钱锡颖,金坤鹏,陆琛杰,朱昉直. 环形混凝土电杆挠度测量不确定度分析. 混凝土与水泥制品. 2020(01): 33-35+40 . 百度学术
    2. 万征,孟达. 基于t准则的各向异性强度准则及变换应力法. 力学学报. 2020(05): 1519-1537 . 本站查看
    3. 张社荣,宋冉,王超,尚超,魏培勇. 碾压混凝土HJC动态本构模型修正及数值验证. 振动与冲击. 2019(12): 25-31 . 百度学术
    4. 任会兰,宁建国,宋水舟,王宗炼. 基于声发射矩张量分析混凝土破坏的裂纹运动. 力学学报. 2019(06): 1830-1840 . 本站查看
    5. 万征,孟达. 复杂加载条件下的砂土本构模型. 力学学报. 2018(04): 929-948 . 本站查看
    6. 肖洋,彭刚,黄超,罗曦,彭竹君. 压剪共同作用下混凝土的损伤演化研究. 水利水运工程学报. 2018(02): 112-119 . 百度学术
    7. 万征,宋琛琛,赵晓光. 一种横观各向同性强度准则及变换应力空间. 力学学报. 2018(05): 1168-1184 . 本站查看
    8. 刘俊,陈林聪,孙建桥. 随机激励下滞迟系统的稳态响应闭合解. 力学学报. 2017(03): 685-692 . 本站查看
    9. 周廷,阚前华,康国政,邱博. 超弹性镍钛形状记忆合金单轴相变棘轮行为的宏观唯象本构模型. 力学学报. 2017(03): 588-596 . 本站查看
    10. 高江平,杨华,蒋宇飞,吴鹏阁,孙世界. 三剪应力统一强度理论研究. 力学学报. 2017(06): 1322-1334 . 本站查看
    11. 武守信,魏吉瑞,杨舒蔚. 基于能量等效原理的应变局部化分析:Ⅱ.有限元解法. 力学学报. 2017(04): 880-893 . 本站查看
    12. 赵国旗,仇亚萍,骆英,冯侃. 基于细观混凝土模型的时间逆转损伤成像方法. 力学学报. 2017(04): 953-960 . 本站查看

    其他类型引用(6)

计量
  • 文章访问数:  1213
  • HTML全文浏览量:  162
  • PDF下载量:  910
  • 被引次数: 18
出版历程
  • 收稿日期:  2015-10-25
  • 修回日期:  2016-06-12
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回