EI、Scopus 收录
中文核心期刊

重力和接触角对表面张力贮箱内液体流动的影响

刘赵淼, 赵婷婷, 申峰

刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3): 430-440. DOI: 10.6052/0459-1879-14-255
引用本文: 刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3): 430-440. DOI: 10.6052/0459-1879-14-255
Liu Zhaomiao, Zhao Tingting, Shen Feng. THE INFLUENCE OF GRAVITY AND CONTACT ANGLE ON THE LIQUID FLOW IN THE SURFACE TENSION TANK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 430-440. DOI: 10.6052/0459-1879-14-255
Citation: Liu Zhaomiao, Zhao Tingting, Shen Feng. THE INFLUENCE OF GRAVITY AND CONTACT ANGLE ON THE LIQUID FLOW IN THE SURFACE TENSION TANK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 430-440. DOI: 10.6052/0459-1879-14-255
刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3): 430-440. CSTR: 32045.14.0459-1879-14-255
引用本文: 刘赵淼, 赵婷婷, 申峰. 重力和接触角对表面张力贮箱内液体流动的影响[J]. 力学学报, 2015, 47(3): 430-440. CSTR: 32045.14.0459-1879-14-255
Liu Zhaomiao, Zhao Tingting, Shen Feng. THE INFLUENCE OF GRAVITY AND CONTACT ANGLE ON THE LIQUID FLOW IN THE SURFACE TENSION TANK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 430-440. CSTR: 32045.14.0459-1879-14-255
Citation: Liu Zhaomiao, Zhao Tingting, Shen Feng. THE INFLUENCE OF GRAVITY AND CONTACT ANGLE ON THE LIQUID FLOW IN THE SURFACE TENSION TANK[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(3): 430-440. CSTR: 32045.14.0459-1879-14-255

重力和接触角对表面张力贮箱内液体流动的影响

详细信息
    通讯作者:

    刘赵淼,教授,主要研究方向:计算流体力学、微流体力学、流固耦合分析.E-mail:lzm@bjut.edu.cn

  • 中图分类号: V211.1+7

THE INFLUENCE OF GRAVITY AND CONTACT ANGLE ON THE LIQUID FLOW IN THE SURFACE TENSION TANK

  • 摘要: 采用流体体积函数方法数值模拟板式表面张力贮箱内液体的流动过程. 主要考虑了不同重力加速度和接触角等因素的影响. 发现在接触角等于10° 的前提下, 重力加速度小于10-2g0, 液体沿着外侧导流叶片爬升至贮箱顶部; 当重力加速度小于10-3g0 时, 重力加速度的减小对液体爬升速度的影响较小. 在爬升过程中, 导流叶片附近液体的速度呈逐渐减小的趋势, 且重力加速度越小, 初始速度越大. 接触角对液体的爬升高度也会产生影响,接触角越小, 液体爬升至顶部的时间越短; 当接触角大于45° 时, 外侧导流叶片附近的液面不能爬升至顶端. 另外, 接触角越大, 液面高度的斜率越小,导流叶片附近液体的初始速度也越小.
    Abstract: The flow behavior inside the vane surface tension tank is studied by using CFD-VOF method. Gravitational acceleration and contact angle are taken into consideration as control parameters. It is shown that when the contact angle is 10° and the gravitational acceleration is less than 10-2g0, the fluid reaches the top of the tank along the outer vanes. Moreover, the flow along the outer vanes is little influenced by the decrease of the gravitational acceleration when the gravitational acceleration is less than 10-3g0. The fluid velocity near the outer vanes decays gradually during the flow process, and the initial velocity depends on gravitational acceleration, the less gravitational acceleration, the larger initial velocity. Furthermore, the height of the flow climbing is impacted significantly by the contact angle. As the contact angle decreases the time of the fluid climbing to the top of the tank increased, and when the contact angle is greater than 45°, the fluid near the outer vanes cannot reach the top of tank. Ultimately, the relationship between the length of the climbing flow (L(t)) with the contact angle (θ) is also analyzed. It is observed that the increase of contact angle leads to the decreases of slope of the L(t) and the initial velocity of the fluid near the vanes.
  • 穆小强, 陈祖奎. 竖管-叶片式表面张力管理装置的设计与分析.火箭推进, 2013, 39(1): 15-18 (Mu Xiaoqiang, Chen Zukui. Design and analysis for standpipe and its vane surface tension management device. Journal of Rocket Propulsion, 2013, 39(1): 15-18 (in Chinese))
    李永, 潘海林, 魏延明.第二代表面张力贮箱的研究与应用进展.宇航学报, 2007, 28(2): 503-507 (Li Yong, Pan Hailin, Wei Yanming. The evolvement of the study and application on the second generation surface tension tank. Journal of Astronautics, 2007, 28(2): 503-507 (in Chinese))
    Tam W, Ballinger I, Jaekle, Jr. D E. Tank trade studies-an overview. AIAA2008-4940
    Tam W H, Taylor J R. Design and manufacture of a repellant tank assembly. AIAA97-2813
    Tam WH, Drey MD, Larsson LW. Design and manufacture of an oxidizer tank assembly. AIAA2001-3825
    Debreceni MJ, Lay WD, Jaekle, Jr. D E. Design and development of a pmd-type bipropellant tank. AIAA 98-3200
    Debreceni MJ, Uo TK, Jaekle, Jr. D E. Development of a titanium propellant tank. AIAA 2003-4604
    Mclean C, Deininger W, Ingram K, et al. Mission demonstration concept for the long-duration storage and transfer of cryogenic propellants. IEEE Aerospace Conference, 2013. 1-11
    魏延明, 潘海林.全管理圆柱形表面张力贮箱的微重力实验验证-静平衡与重定位. 控制工程, 1997, (5): 14-19 (Wei Yanming, Pan Hailing. The microgravity experiment of cylindrical surface tension tank - static equilibrium and reorientation. Control Engineering of China, 1997, (5): 14-19 (in Chinese))
    李章国, 刘秋生, 纪岩等.航天器贮箱气液自由界面追踪数值模拟.空间科学学报, 2008, 28(1): 69-73 (Li Zhangguo, Liu Qiusheng, Ji Yan, et al. Numerical simulation of liquid-vapor interface tracking in tank of spacecraft. Chin J Space Sci , 2008, 28(1): 69-73 (in Chinese))
    李京浩, 陈小前, 黄奕勇.基于内角流动的板式表面张力贮箱内推进剂流动过程研究.国防科技大学学报, 2012, 34(4): 21-24 (Li Jinghao, Chen Xiaoqian, Huang Yiyong. A study of propellant flow in the vane-type surface tension tank based on interior corner flow. Journal of National University of Defense Technology, 2012, 34(4): 21-24 (in Chinese))
    胡齐, 李永, 耿永兵等.一种板式推进剂管理装置(Pmd)性能的数值仿真.空间控制技术与应用, 2010, 36(3): 59-62 (Hu Qi, Li Yong, Geng Yongbin, et al. Numerical Simulation for Capability of a Vane PMD to Manage Propellant. Aerospace Control and Application, 2010, 36(3): 59-62 (in Chinese))
    胡齐, 李永, 潘海林等.微重力环境下大叶片板式贮箱内流体行为的数值仿真与试验验证.空间控制技术与应用, 2013, 39(2): 62-66 (Hu Qi, Li Yong, Pan Hailin, et al. Numerical simulation and experiment verification of fluid behavior in the vane type tank with big vanes in microgravity environment. Aerospace Control and Application, 2013, 39(2): 62-66 (in Chinese))
    Concus P, Finn R, Weislogel M. Measurement of critical contact angle in a microgravity space experiment. Experiments in Fluids, 2000, 28: 197-205
    张晨辉, 芮伟, 段俐等.基于板式表面张力的落塔实验.第九届全国实验流体力学学术会议论文. 2013: 278-282 (Zhang Chenhui, Rui Wei, Duan Li, et al. Falling tower experiment based on vane surface tension. In: Proc. the Ninth National Academic Conference on Experimental Fluid Mechanics. 2013: 278-282 (in Chinese))
    Concus P, Finn R. On capillary free surfaces in a gravitational field. Acta Mathematica, 194, 132(1): 207-233
    李京浩, 陈小前, 黄奕勇等.微重力环境下的不对称内角流动研究.中国科学: 技术科学, 2012, 42(8): 957-962 (Li Jinghao, Chen Xiaoqian, Huang Yiyong, et al. Study on asymmetric interior corner flow in microgravity condition. Sci China Tech Sci, 2012, 42(8): 957-962 (in Chinese))
    刘玲, 李永强, 段俐等. 微重力下圆柱形不对称内角的毛细流动研究. 中国力学大会. 2013.
    刘赵淼, 刘丽昆, 申峰. Y型微通道两相流内部流动特性.力学学报, 2014, 46(2): 209-216 (Liu Zhaomiao, Liu Likun, Shen Feng. Two-phase flow characteristics in Y-junction microchannel. Chinese Journal of Theoretical and Applied Mechanics , 2014, 46(2): 209-216 (in Chinese))
    刘赵淼,刘佳,申峰. 不同重力下90o弯管内气液两相流流型及流动特性研究.力学学报, 2015, 47(2): 223-230 (Liu Zhaomiao, Liu Jia, Shen Feng. Simulation on flow patterns and characteristics of two-phase gas-liquid flow in a 90 bend under different gravity. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(2): 223-230 (in Chinese))
    庄保堂, 李永, 潘海林等.微重力环境下导流叶片流体传输速度的试验研究.空间控制技术与应用. 2012, 38(6): 1-5 (Zhuang Baotang, Li Yong, Pan Hailin, et al. Experiment investigation on transportation velocity of the fluid on propellant acquisition vanes under microgravity environment. Aerospace Control and Application, 2012, 38(6): 1-5 (in Chinese))
计量
  • 文章访问数:  1565
  • HTML全文浏览量:  163
  • PDF下载量:  1008
  • 被引次数: 0
出版历程
  • 收稿日期:  2014-08-31
  • 修回日期:  2015-02-11
  • 刊出日期:  2015-05-17

目录

    /

    返回文章
    返回