宣益民,李强. 纳米流体能量传递理论与应用. 北京: 科学出版社, 2010 (Xuan Yiming, Li Qiang. Energy Transfer Theory and Application of Nanofluid. Beijing: Science Press, 2010 (in Chinese))
|
凌志勇,孙东健, 张忠强等. 温度和颗粒浓度对纳米流体粘度的影响. 功能材料, 2013, 44(1): 92-95 (Ling Zhiyong, Sun Dongjian, Zhang Zhongqiang, et al. Effect of temperature and nanopartcle concentrantion on the viscosity of nanofluids. Functional Materials, 2013, 44(1): 92-95 (in Chinese))
|
唐忠利,彭林明,张树杨等. 纳米流体黏度和流变特性的试验研究.化学工业与工程, 2012, 29(3): 1-5 (Tang Zhongli, Peng Linming, Zhang Shuyang, et al. Experimental study of viscosity and rheological properties of nanofluids. Chemical Industry and Engineering, 2012, 29(3): 1-5 (in Chinese))
|
Syzrantsev VV, Zavyalov AP, Bardakhanov SP. The role of associated liquid layer at nanoparticles and its influence on nanofluids viscosity. International Journal of Heat and Mass Transfer, 2014, 72: 501-506
|
林晓辉,张赤斌,马传浩等. 纳米流体在圆管中输运的两相流理论模型及黏度计算. 中国科学, 2012,42(6):647-656 (Lin Xiaohui, Zhang Chibin, Ma Chuanhao, et al. A two-phase flow theoretical model of nanofluid flowing in pipe and viscosity calculation. Scientia Sinica, 2012, 42(6): 647-656 (in Chinese))
|
Yadav D, Bhargava R, Agrawal GS, et al. Thermal instability in a rotating porous layer saturated by a non-Newtonian nanofluid with thermal conductivity and viscosity variation. Microfluidics and Nanofluidics, 2014, 16 (1-2): 425-440
|
Allen MP, Tildesley DJ. Computer Simulation of Liquids. Bristol: J W Arrowmith Ltd, 1987
|
Kumar P, Varanasi SR, Yashonath S. Relation between the diffusivity, viscosity, and ionic radius of LiCl in water, methanol, and ethylene glycol: a molecular dynamics simulation. J Phys Chem B, 2013, 117(27): 8196-208
|
Chen X, Cao GX, Han AJ, et al. Nanoscale fluid transport: size and rate effects. Nano Letters, 2008, 8(9): 2988-2992
|
Thomas JA, McGaughey AJH. Reassessing fast water transport through carbon nanotubes. Nano Letters, 2008, 8(9): 2788-2793
|
Rudyak VY, Dimov SV, Krasnolutsky SL, et al. Effective viscosity of the nanofluids: Experimental studying and molecular dynamics simulation. Nanotech Conference & Expo, Washington DC, USA, 2013
|
Puliti G. Properties of Au-H2O nanofluids using molecular dynamics. [PhD Thesis]. Indiana: University of Notre Dame, 2013
|
Marrink SJ, Risselada H,Yefimov S, et al. The MARTINI force field: Coarse grained model for biomolecular simulation. J Phys Chem B, 2007, 111(27): 7812-7824
|
Voth GA. Coarse-graining of Condensed Phase and Biomolecular Systems. New York: CRC Press, 2009
|
Monticelli L, Kandasamy SK, Periole X, et al. The MARTINI coarse-grained force field: Extension to proteins. Journal of Chemical Theory and Computation, 2008, 4(5): 819-834
|
Lopez CA, Rzepiela AJ, Vries AH, et al. Martini coarse-grained force field: Extension to carbohydrates. Journal of Chemical Theory and Computation, 2009, 5 (12): 3195-3210
|
Hansen JP,MeDonald IR. Theory of Simple Liquids. New York: Academic Press, 1986.Chap. 7-8
|
Daw MS, Baskes MI. Embedded atom method derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 1984, 29 (12): 8486-8495
|
Mishin Y, Mehl MJ, Papaconstantopoulos DA, et al. Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Physical Review B, 2001, 63: 224106
|
Kole M, Dey TK. Viscosity of alumina nanoparticles dispersed in car engine coolant. Experimental Thermal and Fluid Science, 2010, 34(6): 677-683
|
Nguyen CT, Desgranges F, Galanis N, et al. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable. International Journal of Thermal Science, 2008, 47(2):103-111
|
Einstein A. Investigations on the Theory of the Browmian Movement. New York, Dover, 1956
|
Batchelor HC. The effect of brownianmotion on the bulk stress in a suspension of spherical particles. J F1uid Mech, 1977: 83-97
|