EI、Scopus 收录
中文核心期刊

基于小波阈值密度的自适应重要抽样方法

戴鸿哲, 薛国峰, 王伟

戴鸿哲, 薛国峰, 王伟. 基于小波阈值密度的自适应重要抽样方法[J]. 力学学报, 2014, 46(3): 480-484. DOI: 10.6052/0459-1879-13-303
引用本文: 戴鸿哲, 薛国峰, 王伟. 基于小波阈值密度的自适应重要抽样方法[J]. 力学学报, 2014, 46(3): 480-484. DOI: 10.6052/0459-1879-13-303
Dai Hongzhe, Xue Guofeng, Wang Wei. A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484. DOI: 10.6052/0459-1879-13-303
Citation: Dai Hongzhe, Xue Guofeng, Wang Wei. A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484. DOI: 10.6052/0459-1879-13-303
戴鸿哲, 薛国峰, 王伟. 基于小波阈值密度的自适应重要抽样方法[J]. 力学学报, 2014, 46(3): 480-484. CSTR: 32045.14.0459-1879-13-303
引用本文: 戴鸿哲, 薛国峰, 王伟. 基于小波阈值密度的自适应重要抽样方法[J]. 力学学报, 2014, 46(3): 480-484. CSTR: 32045.14.0459-1879-13-303
Dai Hongzhe, Xue Guofeng, Wang Wei. A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484. CSTR: 32045.14.0459-1879-13-303
Citation: Dai Hongzhe, Xue Guofeng, Wang Wei. A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD[J]. Chinese Journal of Theoretical and Applied Mechanics, 2014, 46(3): 480-484. CSTR: 32045.14.0459-1879-13-303

基于小波阈值密度的自适应重要抽样方法

基金项目: 高等学校博士学科点专项科研基金资助项目(20122302110058).
详细信息
    作者简介:

    戴鸿哲,副教授,主要研究方向:结构随机振动、随机有限元及结构可靠性理论.E-mail:hzdai@hit.edu.cn

  • 中图分类号: TB114;TU311

A WAVELET THRESHOLDING DENSITY-BASED ADAPTIVE IMPORTANCE SAMPING METHOD

Funds: The project was supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (20122302110058).
  • 摘要: 提出了一种基于小波阈值密度估计的结构可靠性分析高效自适应重要抽样方法.该方法利用非线性小波收缩方法对结构失效域样本进行密度估计,并以此作为重要抽样密度进行可靠性分析.与传统基于核密度估计的重要抽样方法比,由于非线性小波阈值密度估计具有较好局部适应性和最优收敛速度,且克服了核密度估计中计算精度严重依赖于参数选择的缺陷,因此以较少的预抽样样本就能获得与传统方法相当的精度,有效提高计算效率.数值算例表明所提方法对工程中常遇到的多设计点及噪音功能函数可靠性问题具有良好适应性.
    Abstract: This study develops an efficient adaptive importance sampling method based on nonlinear wavelet thresholding for reliability analysis. In the proposed method, the pre-sampling samples, which fall in the failure region, are used to estimate the density via the nonlinear wavelet thresholding estimator, and the density obtained is applied as the near-optimal sampling density to implement the importance sampling. Compared with the kernel density estimator, the nonlinear wavelet thresholding density estimator has a high degree of flexibility in terms of convergence rate and smoothness, moreover, the choice of the initial parameters slightly affects the accuracy of the method. Therefore, the proposed method can achieve comparable accuracy with fewer pre-sampling samples and improve the computational efficiency of the traditional method. Numerical examples show that the proposed method is applicable for wide-range reliability problems with multi-design points or noisy limit state functions.
  • Balesdent M, Morio J, Marzat J. Kriging-based adaptive importance sampling algorithms for rare event estimation. Structural Safety, 2013, 44: 1-10
    Yuan XK, Lu ZZ, Zhou CC, et al. A novel adaptive importance sampling algorithm based on Markov chain and low-discrepancy sequence. Aerospace Science and Technology, 2013, 29: 253-261
    Ang GL, Ang AH-S, Tang WH. Optimal importance-sampling density estimator. Journal of Engineering Mechanics ASCE, 1992, 118: 1146-1163
    Au SK, Beck JL. A new adaptive importance sampling scheme for reliability calculations. Structural Safety, 1999, 21: 135-158
    Kurtz N, Song JH. Cross-entropy-based adaptive importance sampling using Gaussian mixture. Structural Safety, 2013, 42: 35-44
    袁修开,吕震宙,池巧君. 基于核密度估计的自适应重要抽样. 西北工业大学学报,2008,26(3):297-302 (Yuan Xiukai, Lü Zhenzhou, Chi Qiaojun. Achieving efficient estimation of reliability sensitivity of a multi-model system without requiring knowledge of design point. Journal of Northwestern Polytechnical University, 2008,26(3):297-302 (in Chinese))
    Silverman BW. Density Estimation for Statistic and Data Analysis. London New York: Chapman and Hall, 1986
    Hardle W, Kerkyacharian G, Picard D. Wavelets, Approximation and Statistical Application. Berlin-Paris: Chapman and Hall, 1997
    Walter GG, Shen XP. Wavelets and Other Orthogonal Systems. Boca Raton: CRC Press, 1994
    Mallat S. Multiresolution approximations and wavelet orthonormal bases of L2(R). Transactions of American Mathematics Society, 1989, 315: 69-87
    Donobo DL, Johnstane IM, Kerkyacharian G, et al. Density estimation by wavelet thresholding. Annual Statistics, 1996, 24: 508-539
    Tribouley K. Practical estimation of multivariate densities using wavelet methods. Statistica Neerlandica, 1995, 49: 41-62
    Pinheiro A, Vidakovic B. Estimating the Square Root of a Density Via Compactly Supported Wavelets. ISDS, Duke University, 1995
    Dubourg V, Sudret B, Deheeger F. Metamodel-based importance sampling for structural reliability analysis. Probabilistic Engineering Mechanics, 2013, 33: 47-57
计量
  • 文章访问数:  1065
  • HTML全文浏览量:  80
  • PDF下载量:  980
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-11-17
  • 修回日期:  2013-12-09
  • 刊出日期:  2014-05-17

目录

    /

    返回文章
    返回