EI、Scopus 收录
中文核心期刊

Poisson括号方法及其在准晶、液晶和一类软物质中的应用

范天佑

范天佑. Poisson括号方法及其在准晶、液晶和一类软物质中的应用[J]. 力学学报, 2013, 45(4): 548-559. DOI: 10.6052/0459-1879-12-346
引用本文: 范天佑. Poisson括号方法及其在准晶、液晶和一类软物质中的应用[J]. 力学学报, 2013, 45(4): 548-559. DOI: 10.6052/0459-1879-12-346
Fan Tianyou. POISSON BRACKET METHOD AND ITS APPLICATIONS TO QUASICRYSTALS, LIQUID CRYSTALS AND A CLASS OF SOFT MATTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 548-559. DOI: 10.6052/0459-1879-12-346
Citation: Fan Tianyou. POISSON BRACKET METHOD AND ITS APPLICATIONS TO QUASICRYSTALS, LIQUID CRYSTALS AND A CLASS OF SOFT MATTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 548-559. DOI: 10.6052/0459-1879-12-346
范天佑. Poisson括号方法及其在准晶、液晶和一类软物质中的应用[J]. 力学学报, 2013, 45(4): 548-559. CSTR: 32045.14.0459-1879-12-346
引用本文: 范天佑. Poisson括号方法及其在准晶、液晶和一类软物质中的应用[J]. 力学学报, 2013, 45(4): 548-559. CSTR: 32045.14.0459-1879-12-346
Fan Tianyou. POISSON BRACKET METHOD AND ITS APPLICATIONS TO QUASICRYSTALS, LIQUID CRYSTALS AND A CLASS OF SOFT MATTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 548-559. CSTR: 32045.14.0459-1879-12-346
Citation: Fan Tianyou. POISSON BRACKET METHOD AND ITS APPLICATIONS TO QUASICRYSTALS, LIQUID CRYSTALS AND A CLASS OF SOFT MATTER[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 548-559. CSTR: 32045.14.0459-1879-12-346

Poisson括号方法及其在准晶、液晶和一类软物质中的应用

基金项目: 国家自然科学基金资助项目(11272053,10672022,10372016,K19972011).
详细信息
    通讯作者:

    范天佑,教授,主要研究方向:力学、准晶学和有关数学方法.E-mail:tyfan2013@163.com

  • 中图分类号: O469

POISSON BRACKET METHOD AND ITS APPLICATIONS TO QUASICRYSTALS, LIQUID CRYSTALS AND A CLASS OF SOFT MATTER

Funds: The project was supported by the National Natural Science Foundation of China (11272053,10672022,10372016,K19972011).
  • 摘要: 对凝聚态物理学中的Poisson 括号及有关Lie群和Lie代数方法做了介绍. 同时介绍了在准晶、液晶和一类软物质研究中的应用.不仅介绍了推导以上物质的流体动力学方程或弹性-流体动力学方程, 也讨论了某些方程的解, 这种解还揭示了国外著名权威的经典解的错误.
    Abstract: This paper gives an introduction on the Poisson bracket method in condensed matter physics, Lie group and Lie algebra and their some applications to quasicrystals, liquid crystals and a class of soft matter. It introduces not only derivation on hydrodynamic or elasto-hydrodynamic equations of the materials, but also solutions of relevant equations, some among them explore the mistakes of well-known classic solutions, in addition, the equations and solutions on soft matter quasicrystals are observed for the first time.
  • Landau LD, Lifshitz ME, Fluid Mechanics, Theory of Elasticity. Oxford: Pergamon, 1988
    Landau LD. Theory of superfluidity of He II. Journal of Physics-USSR, 1941, 5: 71-90
    Landau LD, Lifshitz EM. Zur Theorie der Dispersion der magnetische Permeabilität der ferromagnetische Körpern. Physik Zeitschrift fuer Sowjetunion, 1935, 8(2): 158-164
    Dzyaloshinskii IE, Volovick GE. Poisson brackets in condensed matter physics. Ann Phys (New York), 1980, 125(1): 67-97
    Dzyaloshinskii IE, Volovick GE. On concept of local invariance in the spin glass theory. J de Physique, 1978, 39(6): 693-700
    Volovick GE. Additional localized degrees of freedom in spin glasses. Zh Eksp Teor Fiz, 1978, 75(7): 1102-1109
    Martin PC, Parodi O, Pershan PS. Unified hydrodynamic theory for crystals, liquid crystals, and normal fluids. Phys Rev A, 1972, 6(6): 2401-2420
    Lubensky TC, Ramaswamy S, Toner J. Hydrodynamics of icosahedral quasicrystals. Physical Review B, 1985, 32(11): 7444-7452
    Rochal SB, Lorman VL. Minimal model of the phonon-phason dynamics in icosahedral quasicrystals and its application to the problem of internal friction in the i-AlPdMn alloy. Physical Review B, 2002, 66(14): 144204
    Khannanov SK. Dynamics of elastic and phason fields in quasicrystals. Physics of Metals and Metallography, 2002, 93(5): 397-403
    Coddens G. On the problem of the relation between phason elasticity and phason dynamics in quasicrystals. European Physical Journal B, 2006, 54(1): 37-65
    Fan TY, Wang XF, Li W, et al. Elasto-hydrodynamics of quasicrystals. Philosophical Magazine, 2009, 89(6): 501-512
    Walz C. Zur Hydrodynamik in Quasikristallen. Diplom-Arbeite, Germany: University of Stuttgart, 2003
    de Gennes PD, Prost J. The Physics of Liquid Crystals. Clarendon: Oxford University Press, 1993
    Denton AR, Loewen H. Stability of colloidal quasicrystals. Phys revLett, 1998, 81(2): 469-472
    Fischer S, Exner A, Zielske K, et al. Colloidal quasicrystals with 12-fold and 18-fold diffraction symmetry. Proceeding of the National Academy of Sciences of the United States of America, 2011, 108(5): 1810-1814
    Zeng X, Ungar G, Liu Y S, et al. Supramolecular dendritic liquid quasicrystals. Nature, 2004, 428: 157-160
    Takano K. A mesoscopic Archimedean tiling having a new complexity in an ABC star polymer. Journal of Polymer Science Part B: Polymer Physics, 2005, 43(18): 2427-2432
    Hayashida K, Dotera T, Takano A, et al. Polymeric quasicrystal: Mesoscopic quasicrystalline tiling in ABC star polymers. Physical Review Letters, 2007, 98(19): 195502
    Talapin VD, Elena V, Shevchenko EV, et al. Quasicrystalline order in self-assembled binary nanoparticle superlattices. Nature, 2009, 461: 964-967
    Hu CZ, Ding DH, Yang WG, et al. Possible two-dimensional quasicrystal structures with a six-dimensional embedding space. Physical Review B, 1994, 49(14): 9423-9427
    Fan TY. Elasto-/ hydro-dynamics of quasicrystals with 12- and 18-fold symmetries in some soft matters. Arxiv.org, 1210.238, 2012
    Fan TY. Mathematical Theory of Elasticity of Quasirystals and Its Applications. Beijing: Science Press/Heidelberg, Springer-Verlag, 2010
    Li XF, Fan TY. New method for solving plane elasticity of quasicrystals. Chin Phys Lett, 1998, 18(4): 218-220
    Zhu AY, Fan TY, Guo LH. Elastic field for a straight dislocation in an icosahedral quasicrystal. Journal of Physics: Condensed Matter, 2007, 19: 236216
    Kleman M. Linear theory of dislocations in a smectic A. Journal de Physique, 1974, 35(3): 595-600
    Pershan PS. Dislocation effects in smectic-A liquid crystals. Journal of Applied Physics, 1974, 45(4): 1590-1599
    Fan TY, Li XF. The stress field and energy of screw dislocation in smectic A liquid crystals and on the mistakes of the classical solution. Chinese Physics B, 2013, in press.
    Pauling L. Apparent icosahedral symmetry is due to directed multiple twinning of cubic crystals. Nature, 1985, 317: 512-514
    Shechtman D, Blech I, Gratias D, et al. Metallic phase with long-range orientational order and no translational symmetry. Physical Review Letters, 1984, 53(20): 1951-1953
    范天佑.准晶数学弹性理论和某些有关研究的进展(上). 力学进展, 2012, 42(5): 501-521 (Fan Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics. Advances in Mechanics, 2012, 42(5): 501-521 (in Chinese))
    范天佑.准晶数学弹性理论和某些有关研究的进展(下). 力学进展, 2012, 42(6): 675-691 (Fan Tianyou. Development on mathematical theory of elasticity of quasicrystals and some relevant topics. Advances in Mechanics, 2012, 42(6): 675-691
  • 期刊类型引用(12)

    1. 张甜梦,蔡雄辉. 微流控制备聚甲基丙烯酸甲酯微球. 高分子材料科学与工程. 2024(12): 19-25 . 百度学术
    2. 梁定新,薛春东,曾效,覃开蓉. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究. 实验流体力学. 2023(02): 36-45 . 百度学术
    3. 张帅,王博,马泽遥,陈晓东. 关键构型参数对流动聚焦式微流控液滴生成的影响. 力学学报. 2023(06): 1257-1266 . 本站查看
    4. 康宇,胡晓玮,来星辰. 聚焦型微通道内气泡生成特性数值模拟. 液压与气动. 2022(08): 171-177 . 百度学术
    5. 郑杰,王洪,闫延鹏,崔建国. 微流控芯片液滴生成与检测技术研究进展. 应用化学. 2021(01): 1-10 . 百度学术
    6. 韩博,李芬,贾月梅,连小洁,田海平. 流动聚焦法制备丝素蛋白微球. 生物技术. 2021(03): 300-305 . 百度学术
    7. 梁广洋,郭钟宁,谢凯武,邓宇. 流道结构和两相流速对微液滴制备的影响. 机电工程技术. 2021(07): 119-123 . 百度学术
    8. 穆恺,司廷. 毛细流动聚焦的实验方法及过程控制. 实验流体力学. 2020(02): 46-56 . 百度学术
    9. 徐刚,梁帅,刘武发,郑鹏. 流动聚焦型微流控芯片微通道结构优化. 郑州大学学报(工学版). 2020(04): 87-91 . 百度学术
    10. 韩宇,刘志军,王云峰,罗尧,刘凤霞,王晓娟,魏炜,许晓飞. T型微通道反应器内气液两相流动机制及影响因素. 力学学报. 2019(02): 441-449 . 本站查看
    11. 刘赵淼,王文凯,逄燕. 扩展腔对方波型微混合器混合性能的影响研究. 力学学报. 2018(02): 254-262 . 本站查看
    12. 甘云华,江政纬,李海鸽. 锥射流模式下乙醇静电喷雾液滴速度特性分析. 力学学报. 2017(06): 1272-1279 . 本站查看

    其他类型引用(24)

计量
  • 文章访问数:  2825
  • HTML全文浏览量:  306
  • PDF下载量:  801
  • 被引次数: 36
出版历程
  • 收稿日期:  2012-12-05
  • 修回日期:  2013-03-19
  • 刊出日期:  2013-07-17

目录

    /

    返回文章
    返回