EI、Scopus 收录
中文核心期刊

考虑横向和扭转剪切变形的空间薄壁梁单元

王晓峰, 杨庆山

王晓峰, 杨庆山. 考虑横向和扭转剪切变形的空间薄壁梁单元[J]. 力学学报, 2013, 45(2): 293-296. DOI: 10.6052/0459-1879-12-218
引用本文: 王晓峰, 杨庆山. 考虑横向和扭转剪切变形的空间薄壁梁单元[J]. 力学学报, 2013, 45(2): 293-296. DOI: 10.6052/0459-1879-12-218
Wang Xiaofeng, Yang Qingshan. A NEW SPATIAL THIN-WALLED BEAM ELEMENT INCLUDING TRANSVERSE AND TORSIONAL SHEAR DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 293-296. DOI: 10.6052/0459-1879-12-218
Citation: Wang Xiaofeng, Yang Qingshan. A NEW SPATIAL THIN-WALLED BEAM ELEMENT INCLUDING TRANSVERSE AND TORSIONAL SHEAR DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 293-296. DOI: 10.6052/0459-1879-12-218
王晓峰, 杨庆山. 考虑横向和扭转剪切变形的空间薄壁梁单元[J]. 力学学报, 2013, 45(2): 293-296. CSTR: 32045.14.0459-1879-12-218
引用本文: 王晓峰, 杨庆山. 考虑横向和扭转剪切变形的空间薄壁梁单元[J]. 力学学报, 2013, 45(2): 293-296. CSTR: 32045.14.0459-1879-12-218
Wang Xiaofeng, Yang Qingshan. A NEW SPATIAL THIN-WALLED BEAM ELEMENT INCLUDING TRANSVERSE AND TORSIONAL SHEAR DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 293-296. CSTR: 32045.14.0459-1879-12-218
Citation: Wang Xiaofeng, Yang Qingshan. A NEW SPATIAL THIN-WALLED BEAM ELEMENT INCLUDING TRANSVERSE AND TORSIONAL SHEAR DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(2): 293-296. CSTR: 32045.14.0459-1879-12-218

考虑横向和扭转剪切变形的空间薄壁梁单元

基金项目: 国家自然科学基金资助项目(51278049,90815021,51078026).
详细信息
    通讯作者:

    王晓峰,讲师,主要研究方向:薄壁结构和薄膜结构.E-mail:wangxiaof@bjtu.edu.cn

  • 中图分类号: TU323.3

A NEW SPATIAL THIN-WALLED BEAM ELEMENT INCLUDING TRANSVERSE AND TORSIONAL SHEAR DEFORMATION

Funds: The project was supported by the National Natural Science Foundation of China (51278049, 90815021, 51078026).
  • 摘要: 基于Timoshenko梁及Benscoter薄壁杆件理论,建立了考虑剪切变形、弯扭耦合以及翘曲剪应力影响的空间任意开闭口薄壁截面梁单元. 通过引入单元内部结点,对弯曲转角和翘曲角采用三节点Lagrange独立插值的方法,考虑了剪切变形和翘曲剪应力的影响并避免了横向剪切锁死问题;借助载荷作用下薄壁梁的截面运动分析,在位移和应变方程中考虑了弯扭耦合的影响. 通过数值算例将该单元的计算结果与理论解以及商用有限元软件和其他文献中的数值解进行对比和验证,结果对比表明该薄壁梁单元具有良好的精度和收敛性.
    Abstract: Based on the Timoshenko and Benscoter's theory, a new spatial thin-walled beam element with an arbitrary open or closed cross section is proposed in this paper, accounting for the influences of shear deformation, flexural and torsional coupling and warping shear stress. With introduction of an interior node to the element, three-node interpolation functions are adopted for bending angles and warping angle to consider shear deformation and warping shear stress, and to avoid shear locking simultaneously. Through a kinematic description of the cross section of a deformed thin-walled beam under loads, the flexural-torsional coupling is included in the displacement and strain equations. In order to verify its accuracy and convergence, some numerical examples are analyzed and their results obtained from the present element are compared with theoretical solutions and numerical solutions of the commercial finite element software and other literatures. Comparisons indicate that the present element is free of shear locking and more accurate than those beam elements presented in other documents.
  • Vlasov VZ. Thin Walled Elastic Beams. London: Oldbourne Press, 1961
    Timoshenko SP, Gere JM. Theory of Elastic Stability. 2nd edn. New York: McGraw-Hill, 1961
    Kim NI, Kim MY. Exact dynamic/static stiffness matrices of non-symmetric thin-walled beams considering coupled shear deformation effects. Thin Walled Struct, 2005, 43(5): 701-734
    Vo TP, Lee JH. Geometrical nonlinear analysis of thin-walled composite beams using finite element method based on first order shear deformation theory. Archive of Applied Mechanics, 2011, 81(4): 419-435
    Alsafadie R, Hjiaj M, Battini JM. Three-dimensional formulation of a mixed co-rotational thin-walled beam element incorporating shear and warping deformation. Thin Walled Struct, 2011, 49(4): 523-533
    Gendy AS, Saleeb AF, Chang TYP. Generalized thin-walled beam models for flexural-torsional analysis. Comput Struct, 1992, 42(4): 531-550
    Back SY, Will KM. A shear-flexible element with warping for thin-walled open beams. Int J Numer Methods Eng, 1998, 43(7): 1173-1191  3.0.CO;2-4" target=_blank>
    Bazoune A, Khulief YA, Stephen NG. Shape functions of three-dimensional Timoshenko beam element. J Sound Vib, 2003, 259(2): 473-480
    Minghini F, Tullini N, Laudiero F. Locking-free finite elements for shear deformable orthotropic thin-walled beams. Int J Numer Methods Eng, 2007, 72(7): 808-834
    Tralli A. Simple hybrid model for torsion and flexure of thin-walled beams. Comput Struct, 1986, 22(4): 649-658
    Alsafadie R, Hjiaj M, Battini JM. Three-dimensional formulation of a mixed co-rotational thin-walled beam element incorporating shear and warping deformation. Thin Walled Struct, 2011, 49(4): 523-533
    Hu YR, Jin XD, Chen BZ. Finite element model for static and dynamic analysis of thin-walled beams with asymmetric cross-sections. Comput Struct, 1996, 61(5): 897-908.
    Prokic A. Stiffness method of thin-walled beams with closed cross-section. Comput Struct, 2003, 81: 39-51
    Li J, Shen RY, Hua HX, et al. Coupled bending and torsional vibration of axially loaded thin-walled Timoshenko beams. Int J Mech Sci, 2004, 46(2): 299-320
    Borbon F, Mirasso A, Ambrosini D. A beam element for coupled torsional-flexural vibration of doubly unsymmetrical thin walled beams axially loaded. Comput Struct, 2011, 89(13-14): 1406-1416
    Wang ZQ, Zhao JC, Zhang DX, et al. Restrained torsion of open thin-walled beams including shear deformation effects. J Zhejiang Univ-Sci A, 2012, 13(4): 260-273
    Erkmen RE, Mohareb M. Torsion analysis of thin-walled beams including shear deformation effects. Thin Walled Struct, 2006, 44(10): 1096-1108
    Wang XF, Yang QS. Geometrically nonlinear finite element model of spatial thin-walled beams with general open cross section. Acta Mech Solida Sin, 2009, 22(1): 64-72
    Wang XF, Zhang QL, Yang QS. A new finite element of spatial thin-walled beams. J Appl Math Mech, 2010, 31(9): 1141-1152
    Wang XF, Yang QS, Zhang QL. A new beam element for analyzing geometrical and physical nonlinearity. Acta Mech Sin, 2010, 26(4): 605-615
    Yang QS, Wang XF. A geometrical and physical nonlinear finite element model for spatial thin-walled beams with arbitrary section. Sci China Ser E: Technol Sci, 2010, 53(3): 829-838
    Benscoter SU. A theory of torsion bending for multicell beams. J Appl Mech, 1954, 53: 25-34
计量
  • 文章访问数: 
  • HTML全文浏览量: 
  • PDF下载量: 
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-05
  • 修回日期:  2012-09-06
  • 刊出日期:  2013-03-17

目录

    /

    返回文章
    返回