EI、Scopus 收录
中文核心期刊

基于壁面主动变形的湍流减阻控制研究

葛铭纬, 许春晓, 黄伟希, 崔桂香

葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. DOI: 10.6052/0459-1879-11-198
引用本文: 葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. DOI: 10.6052/0459-1879-11-198
Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. DOI: 10.6052/0459-1879-11-198
Citation: Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. DOI: 10.6052/0459-1879-11-198
葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. CSTR: 32045.14.0459-1879-11-198
引用本文: 葛铭纬, 许春晓, 黄伟希, 崔桂香. 基于壁面主动变形的湍流减阻控制研究[J]. 力学学报, 2012, (4): 653-663. CSTR: 32045.14.0459-1879-11-198
Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. CSTR: 32045.14.0459-1879-11-198
Citation: Ge Mingwei, Xu Chunxiao, Huang Weixi, Cui Guixiang. DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2012, (4): 653-663. CSTR: 32045.14.0459-1879-11-198

基于壁面主动变形的湍流减阻控制研究

基金项目: 国家自然科学基金资助项目(10925210,11002081).
详细信息
  • 中图分类号: O357.5

DRAG REDUCTION CONTROL BASED ON ACTIVE WALL DEFORMATION

Funds: The project was supported by the National Natural Science Foundation of China (10925210, 11002081).
  • 摘要: 采用谱方法, 对反向控制下壁面主动变形的槽道湍流进行了直接数值模 拟研究. 结果表明, 在壁面最大变形量小于5倍黏性尺度条件下, 压差阻力可略, 摩擦阻力 降低7.6%. 施加控制后, 湍流强度和雷诺应力受到明显抑制, 平均速度剖面对数区上移. 受壁面法向运动的影响, 条带结构强度减弱、尺度变大; 流向涡外移且强度减弱, 其倾斜和 抬起的角度均有不同程度的减小. 壁面变形呈现流向拉长的凹槽结构, 其平均间距 为90倍黏性尺度.
    Abstract: Direct numerical simulation was performed to turbulent channel flow with active wall deformation under opposition control. It is shown that when the maximum wall displacement is limited within 5 wall units, the pressure drag is negligible and the friction drag can be reduced by 7.6%. Under the control, the turbulence intensity and Reynolds shear stress are suppressed obviously, and the logarithmic region in mean velocity profile is moved upward. Influenced by the vertical motion of the wall, streaky structures are weakened in strength and enlarged in scale. The streamwise vortices moved further away from the wall with weakened strength, and their tilting and twisting angles are both reduced. The wall appears in the shape of streamwise elongated streaky structures with the mean spacing of 90 wall units.
  • Kravchenko AG, Choi H, Moin P. On the relation of near-wall streamwise vortices to wall skin friction in turbulent boundary layers. Phys Fluids A, 1993, 5: 3307
    Choi H, Moin P, Kim J. Active turbulence control for drag reduction in wall-bounded flows. J Fluid Mech, 1994, 262: 75
    Kang S, Choi H. Active wall motions for skin-friction drag reduction. Phys Fluids, 2000, 12(12): 3301-3304
    Endo T. Feedback control of wall turbulence with wall deformation. Int J Heat Fluid Flow, 2000, 21: 568-575
    Ge MW, Xu CX, Cui GX. Direct numerical simulation of flow in channel with time-dependent wall geometry. Appl Math Mech, 2010, 31(1): 97-108
    Hammond EP, Bewley TR, Moin P. Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows. Phy Fluids, 1998, 10(9): 2421-2423
    Chung YM, Talha T. Effectiveness of active flow control for turbulent skin friction drag reduction. Phys Fluids, 2011, 23: 025102
    Schlichting H. Boundary Layer Theory. New York: McGraw-Hill Book Company, 1979
    Fukagata K, Iwamoto K, Kasagi N. Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows. Phys Fluids, 2002, 14(11): L73-L76
    Jeong J, Hussain F, Schoppa W, et al. Coherent structures near the wall in a turbulent channel flow. J Fluid Mech, 1997, 332: 185-241
    Johanson AV, Alfredsson PH, Kim J. Evolution and dynamics of shear-layer structures in near-wall turbulence. J Fluid Mech, 1991, 224: 459-599
    Hamilton JM, Kim J, Waleffe F. Regeneration mechanisms of near-wall turbulence structures. J Fluid Mech, 1995, 287: 317-348
    Choi H, Moin P, Kim J. Direct numerical simulation of turbulent flow over riblets. J Fluid Mech, 1993, 255: 503-539
    Mito Y, Kasagi N. DNS study of turbulence modification with streamwise-uniform sinusoidal wall-oscillation. Int J Heat Fluid Fl, 1998, 19: 470-481
计量
  • 文章访问数:  3200
  • HTML全文浏览量:  100
  • PDF下载量:  1357
  • 被引次数: 0
出版历程
  • 收稿日期:  2011-07-11
  • 修回日期:  2011-12-24
  • 刊出日期:  2012-07-17

目录

    /

    返回文章
    返回