﻿ 扩散型气柱界面R-M失稳中混合率的实验研究
 文章快速检索 高级检索
 力学学报  2016, Vol. 48 Issue (5): 1073-1079  DOI: 10.6052/0459-1879-16-108 0

引用本文 [复制中英文]

[复制中文]
Huang Xilong , Liao Shenfei , Zou Liyong , Liu Jinhong , Cao Renyi . EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Ship Research, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108.
[复制英文]

文章历史

2016-04-20 收稿
2016-07-25网络版发表

1 实验方法

 图 1 激波管装置 Figure 1 Schematic of the shock tube facility

 图 2 气柱界面 Figure 2 Interface of gas cylinder

2 结果与讨论

2.1 摩尔分数

 图 3 浓度分布 Figure 3 Distribution of concentration

2.2 瞬时混合率

 图 4 规范化后的气柱界面混合率($\chi (x,t)/c^{2}_{\max}$,$c_{\max}$为浓度最大值) Figure 4 Normalized mixing rate of interface ($\chi (x,t)/c^{2}_{\max}$,$c_{\max}$ is the maximum concentration)

2.3 整体平均混合率

 图 5 不同初始界面的整体平均混合率$\chi_{\rm ave}$ Figure 5 Ensemble-averaged mixing rate $\chi_{\rm ave }$ in different initial condition

 图 6 界面混合率的概率密度分布 (IC为初始状态；箭头方向为变化趋势) Figure 6 Probability density of mixing rate \\vskip -1mm(IC is the initial condition; the evolution trend is pointed by arrow)

3 结论

 1 王显圣, 司廷, 罗喜胜, 等. 反射激波冲击重气柱的RM不稳定性数值研究. 力学学报,2012, 44 (4) : 664-672. ( Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock. Chinese Journal of Theoretical and Applied Mechanics,2012, 44 (4) : 664-672. (in Chinese) ) (0) 2 Samtaney R, Meiron DI. Hypervelocity Richtmyer-Meshkov instability. Physics of Fluids,1997, 9 (6) : 1783-1803. DOI: 10.1063/1.869294. (0) 3 Anderson MH, Puranik BP, Oakley JG, et al. Shock tube investigation of hydrodynamic issues related to inertial confinement fusion. Shock Waves,2000, 10 : 377-387. DOI: 10.1007/s001930000067. (0) 4 Tian BL, Fu DX, Ma YW. Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks. Acta Mechanica Sinica,2006, 22 : 9-16. DOI: 10.1007/s10409-005-0083-1. (0) 5 Yang J, Toshi K, Zukoski EE. Applications of shock-induced mixing to supersonic combustion. AIAA Journal,1993, 31 (5) : 854-862. DOI: 10.2514/3.11696. (0) 6 李平, 柏劲松, 王涛, 等. 激波作用下气柱不稳定性发展诱发湍流大涡数值模拟. 中国科学:物理学力学天文学,2009, 39 (9) : 1241-1247. ( Li Ping, Bai Jinsong, Wang Tao, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence. Science China:Physics Mechanics & Astronomy,2009, 39 (9) : 1241-1247. (in Chinese) ) (0) 7 Arnett D. The role of mixing in astrophysics. The Astrophysical Journal Supplement Series,2000, 127 : 213-217. DOI: 10.1086/apjs.2000.127.issue-2. (0) 8 王涛, 柏劲松, 李平, 等. 冲击波加速矩形界面的Richtmyer-Meshkov不稳定性大涡模拟. 中国科学:物理学力学天文学,2009, 39 (12) : 1770-1778. ( Wang Tao, Bai Jinsong, Li Ping, et al. Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interfaces accelerated by shock weaves. Science China:Physics Mechanics & Astronomy,2009, 39 (12) : 1770-1778. (in Chinese) ) (0) 9 Khokhlov AM, Oran ES, Thomas GO. Numerical simulation of deflagration-to-detonation transition-the role of shock-flame interactions in turbulent flames. Combustion and Flame,1999, 117 : 323-339. DOI: 10.1016/S0010-2180(98)00076-5. (0) 10 Brouillette M, Bonazza R. Experiments on the Richtmyer-Meshkov instability:Wall effects and wave phenomena. Physics of Fluids,1999, 11 (5) : 1127-1143. DOI: 10.1063/1.869983. (0) 11 Rightley PM, Vorobie P, Martin R, et al. Evolution of a shockaccelerated thin fluid layer. Physics of Fluids,1997, 9 (6) : 1770-1782. DOI: 10.1063/1.869299. (0) 12 Jacobs JW. The dynamics of shock accelerated light and heavy gas cylinders. Physics of Fluids A,1993, 5 : 2239-2247. DOI: 10.1063/1.858562. (0) 13 Jacobs JW, Jenkins DG, Klein DL, et al. Nonlinear growth of the shock-accelerated instability of a thin fluid layer. Journal of Fluid Mechanics,1995, 295 : 23-42. DOI: 10.1017/S002211209500187X. (0) 14 Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble. Physics of Fluids,2009, 21 : 074102. DOI: 10.1063/1.3176474. (0) 15 Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics,1987, 181 : 41-76. DOI: 10.1017/S0022112087002003. (0) 16 Prasad JK, Rasheed A, Kumar S, et al. The late-time development of the Richtmyer-Meshkov instability. Physics of Fluids,2000, 12 (8) : 2108-2115. DOI: 10.1063/1.870456. (0) 17 Jacobs JW. Shock-induced mixing of a light-gas cylinder. Journal of Fluid Mechanics,1992, 234 : 629-651. DOI: 10.1017/S0022112092000946. (0) 18 Zou LY, Liu CL, Tan DW, et al. On interaction of shock wave with elliptic gas cylinder. Journal of Visualization,2010, 13 : 347-353. DOI: 10.1007/s12650-010-0053-y. (0) 19 Zou LY, Liao Shenfei, Liu Cangli, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids,2016, 28 : 036101. DOI: 10.1063/1.4943127. (0) 20 Wang MH, Si T, Luo XS. Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Experiments in Fluids,2013, 54 : 1427. DOI: 10.1007/s00348-012-1427-9. (0) 21 Wang MH, Si T, Luo XS. Experimental study on the interaction of planar shock wave with polygonal helium cylinders. Shock Waves,2015, 25 : 347-355. DOI: 10.1007/s00193-014-0528-1. (0) 22 邹立勇, 廖深飞, 刘金宏, 等. 双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应. 高压物理学报,2015, 29 (3) : 191-198. ( Zou Liyong, Liao Shenfei, Liu Jinhong, et al. Interaction effect of two ellipse Richtmyer-Meshkov flows. Chinese Journal of High Pressure Physics,2015, 29 (3) : 191-198. (in Chinese) ) (0) 23 Su LK, Clemens NT. The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. Journal of Fluid Mechanics,2003, 488 : 1-29. DOI: 10.1017/S002211200300466X. (0) 24 Tomkins CD, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal of Fluid Mechanics,2008, 611 : 131-150. (0) 25 Balakumar BJ, Orlicz GC, Tomkins CD, et al. Simultaneous paticleimage velocimetry-planar laser-induced fluorescence measurments of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock. Physics of Fluids,2008, 20 : 124103. DOI: 10.1063/1.3041705. (0) 26 Orlicz GC, Balakumar BJ, Tomkins CD, et al. A Mach number study of the Richtmyer-Meshkov intability in a varicose, heavy-gas curtain. Physics of Fluids,2009, 21 : 064102. DOI: 10.1063/1.3147929. (0) 27 Balasubramanian S, Orlicz GC, Prestridge KP, et al. Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock. Physics of Fluids,2012, 24 : 034103. DOI: 10.1063/1.3693152. (0) 28 Tomkins CD, Balakumar BJ, Orlicz GC, et al. Evolution of the density self-correlation in developing Richtmyer-MeshkJov turbulence. Journal of Fluid Mechanics,2013, 735 : 288-306. DOI: 10.1017/jfm.2013.430. (0) 29 Bai JS, Zou LY, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Physical Review E,2010, 82 : 056318. DOI: 10.1103/PhysRevE.82.056318. (0) 30 Buch KA, Dahm JA. Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc 1. Journal of Fluid Mechanics,1996, 317 : 21-71. DOI: 10.1017/S0022112096000651. (0) 31 罗喜胜, 翟志刚, 司廷, 等. 激波诱导下的气体界面不稳定性实验研究. 力学进展,2014, 44 : 201407. ( Luo Xisheng, Zhai Zhigang, Si Ting, et al. Experimental study on the interfacial instability induced by shock waves. Advances in Mechanics,2014, 44 : 201407. (in Chinese) ) (0)
EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE
Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi
National Key Laboratory of Shock Wave and Detonation Physics, Institute of Fluid Physics, CAEP, Mianyang 621900, Sichuan, China
Abstract: Richtmyer-Meshkov (R-M) instability has attracted extensive attention in many engineering application fields. Shock tube experiment is a widely used technique in the study of R-M instability. Thanks to the molecular-level traceability, planar laser-induced fluorescence (PLIF) diagnostic technique o ers concentration (mole fraction) map of interface gas with high resolution. It shows the way to study the mixing in the instability evolution. Di use gas cylinder interfaces are accelerated by a weak shock wave (Ma=1:25) in the experiment. Using PLIF, the mixing of interface is investigated, which is induced by R-M instability. By changing the aspect ratio of elliptic cylinder, concentration maps of diffuse gas cylinders with three types of initial configurations are obtained. The simple stretching, the secondary instability and the jet caused by extrusion in the concentration field are clearly revealed. Moreover, the mixing rate of different stages of evolution is calculated from concentration field. Attempting to understand the mechanism of mixing, instantaneous mixing rate, total mixing rate of the interface and the probability density distribution of mixing rate are analyzed in detail. At early time, baroclinic vorticity accelerates the mixing through stretching interface and intensifying concentration gradient. As the evolution develops, the secondary instability appears, causing the flow transitions to turbulence as a result of smallscale convection. At meantime, molecular mixing induced by concentration gradient is weakened. There is a competitory relationship between diffusion caused by concentration gradient and convection caused by secondary instability, which control the mixing together.
Key words: diffuse interface    R-M instability    PLIF    mixing rate    shock tube