EI、Scopus 收录
中文核心期刊

扩散型气柱界面R-M失稳中混合率的实验研究

黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义

黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 扩散型气柱界面R-M失稳中混合率的实验研究[J]. 力学学报, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108
引用本文: 黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 扩散型气柱界面R-M失稳中混合率的实验研究[J]. 力学学报, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108
Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108
Citation: Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1073-1079. DOI: 10.6052/0459-1879-16-108
黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 扩散型气柱界面R-M失稳中混合率的实验研究[J]. 力学学报, 2016, 48(5): 1073-1079. CSTR: 32045.14.0459-1879-16-108
引用本文: 黄熙龙, 廖深飞, 邹立勇, 刘金宏, 曹仁义. 扩散型气柱界面R-M失稳中混合率的实验研究[J]. 力学学报, 2016, 48(5): 1073-1079. CSTR: 32045.14.0459-1879-16-108
Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1073-1079. CSTR: 32045.14.0459-1879-16-108
Citation: Huang Xilong, Liao Shenfei, Zou Liyong, Liu Jinhong, Cao Renyi. EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(5): 1073-1079. CSTR: 32045.14.0459-1879-16-108

扩散型气柱界面R-M失稳中混合率的实验研究

基金项目: 国家自然科学基金资助项目(11172278,11302201,11472253).
详细信息
    通讯作者:

    黄熙龙,研究实习员,主要研究方向:界面不稳定性.E-mail:xlhuang@caep.cn

  • 中图分类号: O354.5

EXPERIMENTAL INVESTIGATION OF MIXING RATE IN R-M INSTABILITY OF DIFFUSE GAS CYLINDER INTERFACE

  • 摘要: Richtmyer-Meshkov(R-M)不稳定性普遍存在于众多工程问题中,激波管实验是研究R-M失稳问题的主要手段.高精度的平面激光诱导荧光(planar laser-induced fluorescence,PLIF)技术具有分子量级的示踪能力,可获得界面气体浓度(摩尔分数)分布,为研究界面失稳混合问题提供了有力工具.在弱激波(Ma=1:25)冲击扩散型气柱界面实验中,采用PLIF技术对R-M失稳引起的SF6-Air界面混合问题进行了研究.通过改变椭圆形初始界面的长短轴比,得到了3种扩散型初始界面失稳演化过程中气体摩尔分数,观察到了斜压机制下界面的简单拉伸、二次不稳定性、挤压射流等现象.利用浓度分布进一步得到了界面的瞬时混合率,通过瞬时混合率、界面整体平均混合率以及混合率的概率密度分布,分析了界面在不同演化阶段的界面混合特征,初步讨论了界面失稳混合的机制.演化初期,界面在斜压涡的作用下发生拉伸卷曲,通过增大浓度梯度来促进界面的混合.当演化进一步发展,二次不稳定性出现后,界面通过小尺度对流的方式达到湍流混合状态,而浓度梯度驱使的分子间混合逐渐减弱.由浓度梯度引起的扩散与由二次不稳定性引起的对流存在着“竞争”关系,二者共同主导了界面的混合.
    Abstract: Richtmyer-Meshkov (R-M) instability has attracted extensive attention in many engineering application fields. Shock tube experiment is a widely used technique in the study of R-M instability. Thanks to the molecular-level traceability, planar laser-induced fluorescence (PLIF) diagnostic technique o ers concentration (mole fraction) map of interface gas with high resolution. It shows the way to study the mixing in the instability evolution. Di use gas cylinder interfaces are accelerated by a weak shock wave (Ma=1:25) in the experiment. Using PLIF, the mixing of interface is investigated, which is induced by R-M instability. By changing the aspect ratio of elliptic cylinder, concentration maps of diffuse gas cylinders with three types of initial configurations are obtained. The simple stretching, the secondary instability and the jet caused by extrusion in the concentration field are clearly revealed. Moreover, the mixing rate of different stages of evolution is calculated from concentration field. Attempting to understand the mechanism of mixing, instantaneous mixing rate, total mixing rate of the interface and the probability density distribution of mixing rate are analyzed in detail. At early time, baroclinic vorticity accelerates the mixing through stretching interface and intensifying concentration gradient. As the evolution develops, the secondary instability appears, causing the flow transitions to turbulence as a result of smallscale convection. At meantime, molecular mixing induced by concentration gradient is weakened. There is a competitory relationship between diffusion caused by concentration gradient and convection caused by secondary instability, which control the mixing together.
  • 1 王显圣,司廷,罗喜胜等. 反射激波冲击重气柱的RM不稳定性数值研究. 力学学报,2012,44(4):664-672(Wang Xiansheng, Si Ting, Luo Xisheng, et al. Numerical study on the RM instability of a heavy-gas cylinder interacted with reshock. Chinese Journal of Theoretical and Applied Mechanics, 2012, 44(4):664-672(in Chinese))
    2 Samtaney R, Meiron DI. Hypervelocity Richtmyer-Meshkov instability. Physics of Fluids, 1997, 9(6):1783-1803
    3 Anderson MH, Puranik BP, Oakley JG, et al. Shock tube investigation of hydrodynamic issues related to inertial confinement fusion. Shock Waves, 2000, 10:377-387
    4 Tian BL, Fu DX, Ma YW. Numerical investigation of Richtmyer-Meshkov instability driven by cylindrical shocks. Acta Mechanica Sinica, 2006, 22:9-16
    5 Yang J, Toshi K, Zukoski EE. Applications of shock-induced mixing to supersonic combustion. AIAA Journal, 1993, 31(5):854-862
    6 李平,柏劲松,王涛等. 激波作用下气柱不稳定性发展诱发湍流大涡数值模拟. 中国科学:物理学力学天文学,2009,39(9):1241-1247(Li Ping, Bai Jinsong,Wang Tao, et al. Large eddy simulation of a shocked gas cylinder instability induced turbulence. Science China:Physics Mechanics & Astronomy, 2009, 39(9):1241-1247(in Chinese))
    7 Arnett D. The role of mixing in astrophysics. The Astrophysical Journal Supplement Series, 2000, 127:213-217
    8 王涛,柏劲松,李平等. 冲击波加速矩形界面的Richtmyer-Meshkov不稳定性大涡模拟. 中国科学:物理学力学天文学, 2009,39(12):1770-1778(Wang Tao, Bai Jinsong, Li Ping, et al. Large-eddy simulations of the Richtmyer-Meshkov instability of rectangular interfaces accelerated by shock weaves. Science China:Physics Mechanics & Astronomy, 2009, 39(12):1770-1778(in Chinese))
    9 Khokhlov AM, Oran ES, Thomas GO. Numerical simulation of deflagration-to-detonation transition-the role of shock-flame interactions in turbulent flames. Combustion and Flame, 1999, 117:323-339
    10 Brouillette M, Bonazza R. Experiments on the Richtmyer-Meshkov instability:Wall effects and wave phenomena. Physics of Fluids, 1999, 11(5):1127-1143
    11 Rightley PM, Vorobie P, Martin R, et al. Evolution of a shockaccelerated thin fluid layer. Physics of Fluids, 1997, 9(6):1770-1782
    12 Jacobs JW. The dynamics of shock accelerated light and heavy gas cylinders. Physics of Fluids A, 1993, 5:2239-2247
    13 Jacobs JW, Jenkins DG, Klein DL, et al. Nonlinear growth of the shock-accelerated instability of a thin fluid layer. Journal of Fluid Mechanics, 1995, 295:23-42
    14 Layes G, Jourdan G, Houas L. Experimental study on a plane shock wave accelerating a gas bubble. Physics of Fluids, 2009, 21:074102
    15 Haas JF, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities. Journal of Fluid Mechanics, 1987, 181:41-76
    16 Prasad JK, Rasheed A, Kumar S, et al. The late-time development of the Richtmyer-Meshkov instability. Physics of Fluids, 2000, 12(8):2108-2115
    17 Jacobs JW. Shock-induced mixing of a light-gas cylinder. Journal of Fluid Mechanics, 1992, 234:629-651
    18 Zou LY, Liu CL, Tan DW, et al. On interaction of shock wave with elliptic gas cylinder. Journal of Visualization, 2010, 13:347-353
    19 Zou LY, Liao Shenfei, Liu Cangli, et al. Aspect ratio effect on shock-accelerated elliptic gas cylinders. Physics of Fluids, 2016, 28:036101
    20 Wang MH, Si T, Luo XS. Generation of polygonal gas interfaces by soap film for Richtmyer-Meshkov instability study. Experiments in Fluids, 2013, 54:1427
    21 Wang MH, Si T, Luo XS. Experimental study on the interaction of planar shock wave with polygonal helium cylinders. Shock Waves, 2015, 25:347-355
    22 邹立勇,廖深飞,刘金宏等. 双椭圆界面Richtmyer-Meshkov流动中的相互干扰效应. 高压物理学报,2015,29(3):191-198(Zou Liyong, Liao Shenfei, Liu Jinhong, et al. Interaction effect of two ellipse Richtmyer-Meshkov flows. Chinese Journal of High Pressure Physics, 2015, 29(3):191-198(in Chinese))
    23 Su LK, Clemens NT. The structure of fine-scale scalar mixing in gas-phase planar turbulent jets. Journal of Fluid Mechanics, 2003, 488:1-29
    24 Tomkins CD, Kumar S, Orlicz G, et al. An experimental investigation of mixing mechanisms in shock-accelerated flow. Journal of Fluid Mechanics, 2008, 611:131-150
    25 Balakumar BJ, Orlicz GC, Tomkins CD, et al. Simultaneous paticleimage velocimetry-planar laser-induced fluorescence measurments of Richtmyer-Meshkov instability growth in a gas curtain with and without reshock. Physics of Fluids, 2008, 20:124103
    26 Orlicz GC, Balakumar BJ, Tomkins CD, et al. A Mach number study of the Richtmyer-Meshkov intability in a varicose, heavy-gas curtain. Physics of Fluids, 2009, 21:064102
    27 Balasubramanian S, Orlicz GC, Prestridge KP, et al. Experimental study of initial condition dependence on Richtmyer-Meshkov instability in the presence of reshock. Physics of Fluids, 2012, 24:034103
    28 Tomkins CD, Balakumar BJ, Orlicz GC, et al. Evolution of the density self-correlation in developing Richtmyer-MeshkJov turbulence. Journal of Fluid Mechanics, 2013, 735:288-306
    29 Bai JS, Zou LY, Wang T, et al. Experimental and numerical study of shock-accelerated elliptic heavy gas cylinders. Physical Review E, 2010, 82:056318
    30 Buch KA, Dahm JA. Experimental study of the fine-scale structure of conserved scalar mixing in turbulent shear flows. Part 1. Sc 1. Journal of Fluid Mechanics, 1996, 317:21-71
    31 罗喜胜, 翟志刚, 司廷等. 激波诱导下的气体界面不稳定性实验研究. 力学进展, 2014, 44:201407(Luo Xisheng, Zhai Zhigang, Si Ting, et al. Experimental study on the interfacial instability induced by shock waves. Advances in Mechanics, 2014, 44:201407(in Chinese))
  • 期刊类型引用(1)

    1. 李慧鑫,徐多. 被动标量湍流混合的实验研究方法与进展. 实验流体力学. 2024(04): 90-103 . 百度学术

    其他类型引用(0)

计量
  • 文章访问数:  921
  • HTML全文浏览量:  122
  • PDF下载量:  804
  • 被引次数: 1
出版历程
  • 收稿日期:  2016-04-19
  • 修回日期:  2016-07-15
  • 刊出日期:  2016-09-17

目录

    /

    返回文章
    返回