2. 北京理工大学数学学院, 北京 100081
完整系统的第二类Lagrange方程是受约束质点系且不包含约束力的运动微分方程[1].故为研究有多余坐标完整约束系统,需用第一类Lagrange方程或有多余坐标带乘子形式的Lagrange方程[2-4].对于完整力学系统通常采用第二类Lagrange方程来组建系统的运动微分方程,其中的坐标是彼此独立的.但是,有多余坐标的完整系统力学不仅在运动学描述上有重要意义,而且在诸多动力学问题中,如四连杆机构的运动学描述[5-7],工程中振动仪器[7],多体系统动力学[8-10]等有重要意义.在多体系统的动力学中更多地采用微分---代数方程,即有多余坐标完整系统的方程,以便更好地实施计算[11-13].故有时选多余坐标反而会带来方便.
有多余坐标完整系统的自由运动是指系统的约束力为零的运动. 关于约束系统的自由运动问题取得了一些成果.文献[14]给出了非完整系统的自由运动,研究了Chaplygin雪橇的自由运动,并讨论了有外力时实现非完整系统自由运动的可能性,具有一定的实际意义.2005年,Yushkov利用Maggi方程实现了Chaplygin雪橇问题的自由运动,并研究了在有主动力时非完整系统自由运动的可能性[15-16]. 在此基础之上,推广并研究了非完整力学的可控运动[17].关于自由运动问题,一些学者从不同方面进行了讨论研究[18-19].本文主要提出并研究有多余坐标完整系统的一类特殊运动,即自由运动,给出实现自由运动的条件.
1 系统的运动微分方程
设系统的位形由
$ f_\beta \left( {q_s ,t} \right) = 0 \quad \left( {\beta = 1,2,\cdots ,g ; s = 1,2,\cdots,n} \right)$ | (1) |
d'Alembert-Lagrange原理有形式
$ \left( {\dfrac {d }{d }\dfrac {\partial T}{\partial \dot {q}_s } - \dfrac {\partial T}{\partial q_s } - Q_s } \right)\delta q_s = 0 \quad \left( {s = 1,2,\cdots ,n} \right) $ | (2) |
这里及以后,同一项中相同指标表示求和. 式(1)加在虚位移
$ \dfrac {\partial f_\beta }{\partial q_s }\delta q_s = 0 $ | (3) |
由式(2)和式(3),利用Lagrange乘子法,得到方程
$ \dfrac {d }{d }\dfrac {\partial T}{\partial \dot {q}_s } - \dfrac {\partial T}{\partial q_s } = Q_s + \lambda _\beta \dfrac {\partial f_\beta }{\partial q_s } \\ \left( {\beta = 1,2,\cdots ,g ; \ s = 1,2,\cdots,n} \right) $ | (4) |
式(4)右端带乘子的项
将系统动能写成
$ T = T_2 + T_1 + T_0 $ | (5) |
其中
$ T_2 = \dfrac {1}{2}A_{sk} \dot {q}_s \dot {q}_k ,T_1 = B_s \dot {q}_s $ | (6) |
则有
$ \dfrac {d }{d t }\dfrac {\partial T_2 }{\partial \dot {q}_s } - \dfrac {\partial T_2 }{\partial q_s } = \\ A_{sk} \ddot {q}_k + \left( {\dfrac {\partial A_{sk} }{\partial q_m } - \dfrac {1}{2}\dfrac {\partial A_{km} }{\partial q_s }} \right)\dot {q}_k \dot {q}_m + \dfrac {\partial A_{ks} }{\partial t}\dot {q}_k =\\ A_{sk} \ddot {q}_k + \left[{k,m;s} \right] \dot {q}_k \dot {q}_m + \dfrac {\partial A_{ks} }{\partial t}\dot {q}_k $ | (7) |
其中
$ \left[{k,m;s} \right] = \dfrac {1}{2}\left( {\dfrac {\partial A_{ks} }{\partial q_m } + \dfrac {\partial A_{ms} }{\partial q_k } - \dfrac {\partial A_{km} }{\partial q_s }} \right) $ | (8) |
为系数矩阵
$\dfrac {d }{d t }\dfrac {\partial T_1 }{\partial \dot {q}_s } - \dfrac {\partial T_1 }{\partial q_s } = \dfrac {\partial B_s }{\partial t} - \left( {\dfrac {\partial B_k }{\partial q_s } - \dfrac {\partial B_s }{\partial q_k }} \right)\dot {q}_k $ | (9) |
$\dfrac {d }{d t }\dfrac {\partial T_0 }{\partial \dot {q}_s } - \dfrac {\partial T_0 }{\partial q_s } = - \dfrac {\partial T_0 }{\partial q_s } $ | (10) |
将式(7)、 式(9)和式(10)代入式(4),得到
$ A_{sk} \ddot {q}_k + \left[{k,m; s} \right] \dot {q}_k \dot {q}_m = \\ \left( {\dfrac {\partial B_k }{\partial q_s } - \dfrac {\partial B_s }{\partial q_k }} \right)\dot {q}_k + Q_s - \dfrac {\partial B_s }{\partial t} + \dfrac {\partial T_0 }{\partial q_s } -\\ \dfrac {\partial A_{sk} }{\partial t}\dot {q}_k + \lambda _\beta \dfrac {\partial f_\beta }{\partial q_s } \quad \left( {s = 1,2,\cdots ,n} \right) $ | (11) |
因
$ \ddot {q}_l = A^{ls}\left[{ - \left[{k,m; s} \right] \dot {q}_k \dot {q}_m + \left( {\dfrac {\partial B_k }{\partial q_s } - \dfrac {\partial B_s }{\partial q_k }} \right)\dot {q}_k + Q_s } \right. -$
$ \left. { \dfrac {\partial B_s }{\partial t} + \dfrac {\partial T_0 }{\partial q_s } - \dfrac {\partial A_{sk} }{\partial t}\dot {q}_k + \lambda _\beta \dfrac {\partial f_\beta }{\partial q_s }} \right] $ | (12) |
其中
$ A^{ls}A_{sk} = \delta _k^l $ | (13) |
为求得约束力,将式(1)对
$ \dfrac {\partial ^2f_\beta }{\partial t^2} + 2\dfrac {\partial ^2f_\beta }{\partial t\partial q_s }\dot {q}_s + \dfrac {\partial ^2f_\beta }{\partial q_s \partial q_k }\dot {q}_s \dot {q}_k + \dfrac {\partial f_\beta }{\partial q_s }\ddot {q}_s = 0 $ | (14) |
将式(12)代入式(14),消去广义加速度,得到
$\eqalign{ & {{{\partial ^2}{f_\beta }} \over {\partial {t^2}}} + 2{{{\partial ^2}{f_\beta }} \over {\partial t\partial {q_s}}}{{\dot q}_s} + {{{\partial ^2}{f_\beta }} \over {\partial {q_s}\partial {q_k}}}{{\dot q}_s}{{\dot q}_k} + {{\partial {f_\beta }} \over {\partial {q_l}}}{A^{ls}} \cr & \left[ { - \left[ {k,m;s} \right]{{\dot q}_k}{{\dot q}_m} + \left( {{{\partial {B_k}} \over {\partial {q_s}}} - {{\partial {B_s}} \over {\partial {q_k}}}} \right){{\dot q}_k} + {Q_s}} \right. - \left. {{{\partial {B_s}} \over {\partial t}} + {{\partial {T_0}} \over {\partial {q_s}}} - {{\partial {A_{sk}}} \over {\partial t}}{{\dot q}_k} + {\lambda _\gamma }{{\partial {f_\gamma }} \over {\partial {q_s}}}} \right] \cr & = 0\left( {\beta = 1,2, \cdots ,g} \right) \cr} $ | (15) |
当
${\rm{det}}\left( {{{\partial {f_\beta }} \over {\partial {q_l}}}{A^{ls}}{{\partial {f_\gamma }} \over {\partial {q_s}}}} \right) \ne 0$ | (16) |
时,可由式(15)求出所有
$ \varLambda _s = \lambda _\gamma \dfrac {\partial f_\gamma }{\partial q_s } \quad \left( {\gamma = 1,2,\cdots ,g;s = 1,2,\cdots ,n} \right) $ | (17) |
系统的自由运动是指约束力为零的运动,将
$ \dfrac {\partial ^2f_\beta }{\partial t^2} + 2\dfrac {\partial ^2f_\beta }{\partial t\partial q_s }\dot {q}_s + \dfrac {\partial ^2f_\beta }{\partial q_k \partial q_s }\dot {q}_k \dot {q}_s +\\ \dfrac {\partial f_\beta }{\partial q_l }A^{ls}\Bigg [- \left[{k,m;s} \right] \dot {q}_k \dot {q}_m + Q_s - \\ \dfrac {\partial B_s }{\partial t} + \dfrac {\partial T_0 }{\partial q_s } - \dfrac {\partial A_{sk} }{\partial t}\dot {q}_k \Bigg] = 0 \\ \left( {\beta = 1,2,\cdots ,g} \right) $ | (18) |
这就是系统发生自由运动的条件. 特别地,如果
$ \left.\!\!\begin{array}{l} B_s = 0 \left( {s = 1,2,\cdots ,n} \right) \\ T_0 = 0 \\ \dfrac {\partial A_{ks} }{\partial t} = 0 \left( {k,s = 1,2,\cdots ,n} \right) \end{array} \right\} $ | (19) |
则式(18)成为
$ \dfrac {\partial ^2f_\beta }{\partial t^2} + 2\dfrac {\partial ^2f_\beta }{\partial t\partial q_s }\dot {q}_s + \dfrac {\partial ^2f_\beta }{\partial q_s \partial q_k }\dot {q}_s \dot {q}_k + \\ \dfrac {\partial f_\beta }{\partial q_l }A^{ls}\left( { - \left[{k,m; s} \right] \dot {q}_k \dot {q}_m + Q_s } \right) = 0 $ | (20) |
进而,如果
$ \dfrac {\partial ^2f_\beta }{\partial t^2} + 2\dfrac {\partial ^2f_\beta }{\partial t\partial q_s }\dot {q}_s + \dfrac {\partial ^2f_\beta }{\partial q_s \partial q_k }\dot {q}_s \dot {q}_k + \\ \dfrac {\partial f_\beta }{\partial q_l }A^{ls}Q_s = 0 \quad \left( {\beta = 1,2,\cdots ,g} \right) $ | (21) |
当系统发生自由运动时,式(4)成为
$ \dfrac {d }{d }\dfrac {\partial T}{\partial \dot {q}_s } - \dfrac {\partial T}{\partial q_s } = Q_s \quad \left( {s = 1,2,\cdots ,n} \right) $ | (22) |
例1 系统的动能和约束分别为
$ T = \dfrac {1}{2}\left( {\dot {q}_1^2 + \dot {q}_2^2 + \dot {q}_3^2 } \right) ,f = tq_1 + 2q_2 - 3q_3 = 0 $ | (23) |
其中的量已无量纲化,试求实现自由运动所应施加的主动力之间的关系.
解:式(21)给出
$ 2\dot {q}_1 + tQ_1 + 2Q_2 - 3Q_3 = 0 $ | (24) |
如不施加主动力,即
例2 系统动能和约束分别为
$\left. {\matrix{ {T = {1 \over 2}\left[ {\dot q_1^2\left( {2 + \sin t} \right) + \dot q_2^2 + \dot q_3^2} \right]} \cr {f = {t^2}{q_1} - {q_2} - {q_3} = 0} \cr } } \right\}$ | (25) |
其中量已无量纲化,试求系统实现自由运动的条件.
解:由
$ A_{11} = 2 + \sin t ,A_{22} = 1 ,A_{33} = 1 $ |
于是有
$ A_{11} = \dfrac {1}{2 + \sin t} ,A_{22} = 1 ,A_{33} = 1 $ |
以及
$ \left[{k,m;s} \right] = 0 \quad \left( {k,m,s = 1,2} \right)$ |
式(18)给出
$ 2q_1 + 4t\dot {q}_1 + \dfrac {t^2}{2 + \sin t}\left( {Q_1 - \dot {q}_1 \cos t} \right) - \\ Q_2 - Q_3 = 0 $ | (26) |
这就是系统实现自由运动对主动力
本文研究了有多余坐标完整力学系统的自由运动,得到实现自由运动的条件. 如果需要自由运动,必须满足这些条件;如果不需要自由运动,必须避开这些条件. 同时,正如文献[15]所指出的,如果系统的运动对自由运动有小的偏离,那么就有小的约束力,可将其作为干扰来研究以实现规划运动.
[1] | Lagrange JL. Mécanique Analytique. Paris: Jaques Gabay, 2006 (0) |
[2] | 梅凤翔. 分析力学[M]. 北京: 北京理工大学出版社, 2013 . ( Mei Fengxiang. Analytical Mechanics[M]. Beijing: Beijing Institute of Techanology Press, 2013 . (in Chinese) ) (0) |
[3] | 朱照宣, 周起钊, 殷金生. 理论力学[M]. 北京: 北京大学出版社, 1982 . ( Zhu Zhaoxuan, Zhou Qizhao, Yin Jinsheng. Theoretical Mechanics[M]. Beijing: Peking University Press, 1982 . (in Chinese) ) (0) |
[4] | Hurtado JE, Sinclair AJ. Lagrangian mechanics of overparameterized systems[J]. Nonlinear Dynamics,2011, 66 : 201-212. DOI: 10.1007/s11071-010-9921-1. (0) |
[5] | Лypъе A И. Aналитическая Механика. Москва: ФИЗМAТГИЗ,1961 (0) |
[6] | 陈滨. 分析力学[M]. 北京: 北京大学出版社, 2012 . ( Chen Bin. Analytical Mechanics[M]. 2nd edn. Beijing: Peking University Press, 2012 . (in Chinese) ) (0) |
[7] | 梅凤翔, 刘桂林. 分析力学基础[M]. 西安: 西安交通大学出版社, 1987 . ( Mei Fengxiang, Liu Guilin. The Foundations of Analytical Mechanics[M]. Xi’an: Xi’an Jiaotong University Press, 1987 . (in Chinese) ) (0) |
[8] | Brogliato B, Goeleven D. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems[J]. Multibody System Dynamics,2015, 35 : 39-61. DOI: 10.1007/s11044-014-9437-4. (0) |
[9] | Wojtyra M, Fraczek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints[J]. Multibody System Dynamics,2013, 30 : 153-171. DOI: 10.1007/s11044-013-9352-0. (0) |
[10] | Whittaker ET. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn[M]. Cambridge: Cambridge University Press, 1970 . (0) |
[11] | 刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001 . ( Liu Yanzhu. Advanced Dynamics[M]. Beijing: Higher Education Press, 2001 . (in Chinese) ) (0) |
[12] | 尚玫. 高等动力学[M]. 北京: 机械工业出版社, 2013 . ( Shang Mei. Advanced Dynamics[M]. Beijing: China Mechine Press, 2013 . (in Chinese) ) (0) |
[13] | Jungnickel U. Differential-algebraic equations in Riemannian spaces and applications to multibody system dynamics[J]. ZAMM,1994, 74 : 409-415. DOI: 10.1002/(ISSN)1521-4001. (0) |
[14] | 梅凤翔. 非完整系统的自由运动和非完整性的消失[J]. 力学学报,1994, 26 (6) : 470-476. ( Mei Fengxiang. The freedom motion of nonholonomic system and disappearance of nonholonomic property[J]. Chinese Journal of Theoretical and Mechanics,1994, 26 (6) : 470-476. (in Chinese) ) (0) |
[15] | Зегжда С А,Солтаханов ШХ,Юшков МП. Уравнения Движения Неголономых Систем и Вариационные Принципы Механики. Новый Класс Задач Управления. Москва: ФИЗМАТЛИТ, 2005 (0) |
[16] | 杰格日达CA,索尔塔哈诺夫X H, 尤士科夫M P. 梅凤翔译. 非完整系统的运动方程和力学的变分原理,新一类的控制问题. 北京:北京理工大学出版社, 2007 ( Zegzda SA, Soltakhanov Sh Kh, Yushkov MP. Equations of Motion of Nonholonomic Systems and Variational Principle of Mechanics. Beijing: Beijing Institute of Techanology Press, 2007 (in Chinese) ) (0) |
[17] | Терmычныŭ Даурu B. Ю. Адаптивная механика [М]: Наука, 1998 (0) |
[18] | 丁光涛. 状态空间中约束系统的运动方程. 动力学与控制学报[M]. 2015 : 250 -255. ( Ding Guangtao. The equation motion of constrained systems in state space. Journal of Dynamics and Control[M]. 2015 : 250 -255. (in Chinese) ) (0) |
[19] | 郭仲衡. 从冰橇问题谈起[M]. 徐州: 中国矿业大 学出版社, 1993 : 451 -453. ( Guo Zhongheng. From the problem of sledge[M]. The Modern Mathematics and Mechanics. Xuzhou: China Mining University Press, 1993 : 451 -453. (in Chinese) ) (0) |
2. School of Mathematics, Beijing Institute of Technology, Beijing 100081, China