EI、Scopus 收录
中文核心期刊

有多余坐标完整系统的自由运动

陈菊, 吴惠彬, 梅凤翔

陈菊, 吴惠彬, 梅凤翔. 有多余坐标完整系统的自由运动[J]. 力学学报, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392
引用本文: 陈菊, 吴惠彬, 梅凤翔. 有多余坐标完整系统的自由运动[J]. 力学学报, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392
Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392
Citation: Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. DOI: 10.6052/0459-1879-15-392
陈菊, 吴惠彬, 梅凤翔. 有多余坐标完整系统的自由运动[J]. 力学学报, 2016, 48(4): 972-975. CSTR: 32045.14.0459-1879-15-392
引用本文: 陈菊, 吴惠彬, 梅凤翔. 有多余坐标完整系统的自由运动[J]. 力学学报, 2016, 48(4): 972-975. CSTR: 32045.14.0459-1879-15-392
Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. CSTR: 32045.14.0459-1879-15-392
Citation: Chen Ju, Wu Huibin, Mei Fengxiang. FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 972-975. CSTR: 32045.14.0459-1879-15-392

有多余坐标完整系统的自由运动

基金项目: 国家自然科学基金资助项目(10932002, 11272050, 11572034).
详细信息
    通讯作者:

    梅凤翔,教授,主要研究方向:分析力学.E-mail:meifx@bit.edu.cn

  • 中图分类号: O316

FREE MOTION OF HOLONOMIC SYSTEM WITH REDUNDANT COORDINATES

  • 摘要: 对于完整力学系统,若选取的参数不是完全独立的,则称为有多余坐标的完整系统. 由于完整力学系统的第二类Lagrange 方程中没有约束力,故为研究完整力学系统的约束力,需采用有多余坐标的带乘子的Lagrange方程或第一类Lagrange 方程. 一些动力学问题要求约束力不能为零,而另一些问题要求约束力很小. 如果约束力为零,则称为系统的自由运动问题. 本文提出并研究了有多余坐标完整系统的自由运动问题. 为研究系统的自由运动,首先,由d'Alembert-Lagrange 原理, 利用Lagrange 乘子法建立有多余坐标完整系统的运动微分方程;其次,由多余坐标完整系统的运动方程和约束方程建立乘子满足的代数方程并得到约束力的表达式;最后,由约束系统自由运动的定义,令所有乘子为零,得到系统实现自由运动的条件. 这些条件的个数等于约束方程的个数,它们依赖于系统的动能、广义力和约束方程,给出其中任意两个条件,均可以得到实现自由运动时对另一个条件的限制. 即当给定动能和约束方程,这些条件会给出实现自由运动时广义力之间的关系. 当给定动能和广义力,这些条件会给出实现自由运动时对约束方程的限制. 当给定广义力和约束方程,这些条件会给出实现自由运动时对动能的限制. 文末,举例并说明方法和结果的应用.
    Abstract: If the parameters are not completely independent for holonomic systems, it is called holonomic systems with redundant coordinates. In order to study the forces of constraints for holonomic systems, we use the Lagrange equations with multiplicators of redundant coordinates or the first kind of Lagrange equations. Because there are no forces of constraints in the second kind of Lagrange equations. In some mechanical problems, the forces of constraints should not be equal to zero. In other conditions, the forces of constraints are very tiny. However, if the forces of constraints are all equal to zero, we called the free motion of constraints mechanical systems. This paper presents the free motion of holonomic system with redundant coordinates. At first, the differential equations of motion of the system are established according to d'Alembert-Lagrange principle. Secondly, the form of forces of constraints is determined by using the equations of constraints and the equations of motion. Finally, the condition under which the system has a free motion is obtained. The number of this conditions is equal to the constraints equation's, its depend on the kinetic energy, generalized forces and constraints equations. If the two arbitrary conditions are given, the third one should be obtained when the system becomes free motion. At the end, some examples are given to illustrate the application of the methods and results.
  • 1 Lagrange JL. Mécanique Analytique. Paris: Jaques Gabay, 2006
    2 梅凤翔. 分析力学. 北京: 北京理工大学出版社,2013 (Mei Fengxiang. Analytical Mechanics. Beijing: Beijing Institute of Techanology Press, 2013 (in Chinese))
    3 朱照宣, 周起钊, 殷金生. 理论力学. 北京: 北京大学出版社, 1982 (Zhu Zhaoxuan, Zhou Qizhao, Yin Jinsheng. Theoretical Mechanics. Beijing: Peking University Press, 1982 (in Chinese))
    4 Hurtado JE, Sinclair AJ. Lagrangian mechanics of overparameterized systems. Nonlinear Dynamics, 2011, 66: 201-212
    5 Лypъе A И. Aналитическая Механика. Москва: ФИЗМAТГИЗ,1961
    6 陈滨. 分析力学. 第二版. 北京: 北京大学出版社,2012 (Chen Bin. Analytical Mechanics. 2nd edn. Beijing: Peking University Press, 2012 (in Chinese))
    7 梅凤翔, 刘桂林. 分析力学基础. 西安: 西安交通大学出版社, 1987 (Mei Fengxiang, Liu Guilin. The Foundations of Analytical Mechanics. Xi’an: Xi’an Jiaotong University Press, 1987 (in Chinese))
    8 Brogliato B, Goeleven D. Singular mass matrix and redundant constraints in unilaterally constrained Lagrangian and Hamiltonian systems. Multibody System Dynamics, 2015, 35: 39-61
    9 Wojtyra M, Fraczek J. Solvability of reactions in rigid multibody systems with redundant nonholonomic constraints. Multibody System Dynamics, 2013, 30: 153-171
    10 Whittaker ET. A Treatise on the Analytical Dynamics of Particles and Rigid Bodies, 4th edn. Cambridge: Cambridge University Press, 1970, Sect. 24 & 87
    11 刘延柱. 高等动力学. 北京: 高等教育出版社, 2001 (Liu Yanzhu. Advanced Dynamics. Beijing: Higher Education Press, 2001 (in Chinese))
    12 尚玫. 高等动力学. 北京: 机械工业出版社, 2013 (Shang Mei. Advanced Dynamics. Beijing: China Mechine Press, 2013 (in Chinese))
    13 Jungnickel U. Differential-algebraic equations in Riemannian spaces and applications to multibody system dynamics. ZAMM, 1994, 74: 409-415
    14 梅凤翔. 非完整系统的自由运动和非完整性的消失. 力学学报, 1994, 26(6): 470-476 (Mei Fengxiang. The freedom motion of nonholonomic system and disappearance of nonholonomic property. Chinese Journal of Theoretical and Mechanics, 1994, 26(6): 470-476 (in Chinese))
    15 Зегжда С А,Солтаханов ШХ,Юшков МП. Уравнения Движения Неголономых Систем и Вариационные Принципы Механики. Новый Класс Задач Управления. Москва: ФИЗМАТЛИТ, 2005
    16 杰格日达CA,索尔塔哈诺夫X H, 尤士科夫M P. 梅凤翔译. 非完整系统的运动方程和力学的变分原理,新一类的控制问题. 北京:北京理工大学出版社, 2007 (Zegzda SA, Soltakhanov Sh Kh, Yushkov MP. Equations of Motion of Nonholonomic Systems and Variational Principle of Mechanics. Beijing: Beijing Institute of Techanology Press, 2007 (in Chinese))
    17 Терmычны? Даурu B. Ю. Адаптивная механика [М]: Наука, 1998
    18 丁光涛. 状态空间中约束系统的运动方程. 动力学与控制学报, 2015, 13(4): 250-255 (Ding Guangtao. The equation motion of constrained systems in state space. Journal of Dynamics and Control, 2015, 13(4): 250-255 (in Chinese))
    19 郭仲衡. 从冰橇问题谈起. 现代数学和力学. 徐州: 中国矿业大 学出版社, 1993: 451-453 (Guo Zhongheng. From the problem of sledge. The Modern Mathematics and Mechanics. Xuzhou: China Mining University Press, 1993: 451-453 (in Chinese))
  • 期刊类型引用(1)

    1. 陈菊,郭永新,梅凤翔. 有多余坐标的可控完整力学系统的自由运动与初始运动. 动力学与控制学报. 2019(05): 408-412 . 百度学术

    其他类型引用(2)

计量
  • 文章访问数:  958
  • HTML全文浏览量:  94
  • PDF下载量:  434
  • 被引次数: 3
出版历程
  • 收稿日期:  2015-10-26
  • 修回日期:  2016-05-31
  • 刊出日期:  2016-07-17

目录

    /

    返回文章
    返回