﻿ 剪刀式尾桨涡流干扰机理和气动特性研究
 文章快速检索 高级检索
 力学学报  2016, Vol. 48 Issue (4): 886-896  DOI: 10.6052/0459-1879-15-338 0

引用本文 [复制中英文]

[复制中文]
Zhu Zheng , Zhao Qijun , Wang Bo . STUDIES ON VORTEX INTERACTION MECHANISM AND AERODYNAMIC CHARACTERISTIC OF SCISSORS TAIL ROTOR[J]. Chinese Journal of Ship Research, 2016, 48(4): 886-896. DOI: 10.6052/0459-1879-15-338.
[复制英文]

文章历史

2015-09-08 收稿
2016-06-01网络版发表

0 引言

1 数值计算方法与验证 1.1 嵌套网格方法

 图 1 嵌套网格系统示意图 Fig. 1 Schematic of embedded grid system

 图 2 "剪刀角"和"轴间距"含义示意图 Fig. 2 Schematic of definition of "scissors angle" and "vertical space"
 图 3 U构型和L构型剪刀式尾桨示意图 Fig. 3 Schematic of scissors tail rotors with configuration U and configuration L
1.2 CFD方法

 ${\partial \over {\partial t}}\mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} W dV + \int\!\!\!\int\limits_S {({F_{\rm{c}}} - {F_{\rm{v}}})} \cdot ndS = \mathop{\int\!\!\!\int\!\!\!\int}\limits_{\kern-5.5pt V} Q dV$ (1)

 \eqalign{ & V \cdot {{{W^{m + 1}} - {W^m}} \over {\Delta t}} + \mathop \int\!\!\!\int \limits_{\partial V} (F_n^{{\rm{c}},m + 1} - F_n^{c,m})dS - \cr & \mathop \int\!\!\!\int \limits_{\partial V} (F_n^{{\rm{v}},m + 1} - F_n^{{\rm{v}},m})dS - V \cdot ({Q^{m + 1}} - {Q^m}) = Re{s^m} \cr} (2)

 \eqalign{ & {({F_{\rm{c}}})_{i + 1/2}} = {1 \over 2}[{F_{\rm{c}}}({W_{\rm{R}}}) + {F_{\rm{c}}}({W_{\rm{L}}}) - \cr & {\left| {{A_{{\rm{Roe}}}}} \right|_{i + 1/2}}({W_{\rm{R}}} - {W_{\rm{L}}})] \cr} (3)

 ${\matrix{ {{W_{\rm{R}}} = {W_{i + 1}} - {1 \over 4}[(1 + \xi ){\Delta ^ - } + (1 - \xi ){\Delta ^ + }]{W_{i + 1}}} \hfill \cr {{W_{\rm{L}}} = {W_i} + {1 \over 4}[(1 + \xi ){\Delta ^ + } + (1 - \xi ){\Delta ^ - }]{W_i}} \hfill \cr } }$ (4)

1.3 方法验证

 $FM = {{{C_{\rm{T}}} \cdot \sqrt {{C_{\rm{T}}}/2} } \over {{C_{\rm{Q}}}}}$ (5)
 图 4 7A旋翼气动性能的计算值与试验值对比 Fig. 4 Comparisons of aerodynamic characteristics of Helishape 7A rotor between numerical results and experimental data

 图 5 C-T模型旋翼桨尖涡涡核位置的计算值与试验值对比 Fig. 5 Comparisons of the calculated position of blade-tip vortex core of C-T model rotor between numerical results and experimental data
2 涡干扰流场分析

 图 6 L构型尾桨涡量等值面图 Fig. 6 Iso-surfaces of vorticity magnitude for scissors tail rotors with configuration L
 图 7 U构型尾桨涡量等值面图 Fig. 7 Iso-surfaces of vorticity magnitude for scissors tail rotors with configuration U

 图 8 尾迹截面示意图 Fig. 8 Schematic of sections for wake trajectory

 图 9 L构型剪刀式尾桨的涡量云图 Fig. 9 Vorticity magnitude contours of scissors tail rotor with configuration L
 图 10 L构型剪刀式尾桨桨尖涡涡核强度和位置 Fig. 10 Positions and strength of blade-tip vortex core for scissors vskip -1mm tail rotor with configuration L

 图 11 U构型剪刀式尾桨的涡量云图 Fig. 11 Vorticity magnitude contours of scissors tail rotor with configuration U
 图 12 U 构型剪刀式尾桨桨尖涡涡核强度和位置 Fig. 12 Position and strength of blade-tip vortex core for scissors tail rotor with configuration U

3 气动特性分析

 图 13 L构型桨叶展向拉力系数 Fig. 13 Spanwise distribution of lift coefficient for scissors tail rotor with configuration L
 图 14 U构型桨叶展向拉力系数 Fig. 14 Spanwise distribution of lift coefficient for scissors tail rotor with configuration U

 图 15 不同轴间距时单片桨叶拉力系数随剪刀角的变化 Fig. 15 Thrust coefficient of scissors rotor blade varies with scissors angle for different vertical space
 图 16 不同轴间距时总拉力系数随剪刀角的变化 Fig. 16 Total thrust coefficient of scissors rotor varies with scissors angle for different vertical space

 图 17 不同轴间距时扭矩系数随剪刀角的变化 Fig. 17 Torque coefficient of scissors rotor varies with scissors angle for different vertical space
 图 18 不同轴间距时悬停效率随剪刀角的变化 Fig. 18 Figure of merit of scissors rotor varies with scissors angle for different vertical space
4 结论

(1) 剪刀式尾桨中存在着严重的桨-涡干扰现象.上桨叶的桨尖涡甚至会直接与下桨叶发生碰撞，一方面导致下桨叶拉力损失，另一方面碰撞后的桨尖涡会破碎、涡核运动轨迹发生改变、强度减弱. 而上桨叶的下洗流则会使得下桨叶的实际迎角减小，同样导致下桨叶拉力减小.其中，U构型下桨叶所受的干扰比L构型下桨叶所受干扰要强烈；

(2) 剪刀式尾桨中存在着复杂的涡-涡干扰现象.一方面上桨叶的桨尖涡和下桨叶干扰之后导致自身强度和轨迹发生突变，随后会与下桨叶的桨尖涡相互干扰、融合，并且对下桨叶桨尖涡强度和轨迹也造成影响；另一方面，上桨叶桨尖涡和下桨叶桨尖涡在运动过程由于距离较近，相互之间也会发生一定程度的干扰，甚至互相吸收融合；

(3) 剪刀角和轴间距对剪刀式尾桨的气动力有重要影响.总体来说，相同剪刀角和相同轴间距配置时，L构型剪刀式尾桨的拉力和悬停效率均大于U构型剪刀式尾桨.L构型剪刀式尾桨的气动力随着剪刀角的增大而增大，随着轴间距的增大而减小；U构型剪刀式尾桨的气动力随着剪刀角的增大而减小，随着轴间距的增大而增大.