«上一篇
文章快速检索     高级检索
下一篇»
  力学学报  2016, Vol. 48 Issue (2): 348-352  DOI: 10.6052/0459-1879-14-398
0

栏目名称

引用本文 [复制中英文]

李海燕, 李志辉, 吕治国, 罗万清, 常雨. 自由活塞压缩管ALE方法数值模拟[J]. 力学学报, 2016, 48(2): 348-352. DOI: 10.6052/0459-1879-14-398.
[复制中文]
Li Haiyan, Li Zhihui, Lü Zhiguo, Luo Wanqing, Chang Yu. ARBITRARY LAGRANGIAN EULERIAN SIMULATION OF FREE PISTON COMPRESSION TUBE[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(2): 348-352. DOI: 10.6052/0459-1879-14-398.
[复制英文]

基金项目

"973"计划资助项目(2014CB744100).

作者简介

李海燕,副研究员,主要研究方向:长期从事高超声速飞行器高温真实气体效应研究. E-mail:lililhy@163.com

文章历史

2014-12-09 收稿
2016-01-22 录用
2016-01-26 网络版发表.
自由活塞压缩管ALE方法数值模拟
李海燕 , 李志辉, 吕治国, 罗万清, 常雨    
中国空气动力研究与发展中心超高速所, 四川 绵阳 621000
摘要:当前国际上实现高焓气体流动的实验手段之一是自由活塞驱动类脉冲设备,包括自由活塞激波风洞和自由活塞膨胀管.采用自由活塞压缩管作为激波风洞和膨胀管的驱动段时,其驱动能力在很大程度上决定了该类设备的性能.本文采用计算流体力学中任意拉格朗日——欧拉方法(arbitrary Lagrangian Eulerian)数值模拟了压缩管内部的自由活塞运动和气体流动特征.采用移动网格技术来适应活塞运动边界,耦合求解网格运动和气体流动过程,并通过双时间步长方法进行流体运动的时间积分.为了满足几何守恒律(geometric conservation law),对移动网格的法向矢量和表面面积计算进行了修正.不同时刻的活塞位置试验测量结果及欧拉方法预测结果,以及基于简单波理论获得的运动活塞底部气体压力、活塞速度与活塞位置都与当前的ALE方法十分一致.该工作为下一步数值模拟自由活塞激波风洞和自由活塞膨胀管中包括压缩管、激波管和喷管等不同部位的耦合流动提供了基础.
关键词计算流体力学    自由活塞压缩管    ALE方法    移动网格    双时间步长    
引言

研究高温真实气体效应时,需要在地面实验设备中能够实现高焓气体流动. 当前国际上实现高焓气体流动的实验手段之一是自由活塞驱动类脉冲设备,包括自由活塞激波风洞和自由活塞膨胀管. 前者包括HEG [1, 2]、T5 [3, 4]和HIEST [5, 6]等,后者包括X2 [7]、X3 [8, 9]和JX-1 [10, 11]等. 自由活塞压缩管的驱动能力在很大程度上决定了自由活塞驱动类设备的试验性能.

自20世纪60年代起,国外学者Stalker [12, 13]、Hornung [14]、Itoh [15, 16]等先后对压缩管内部的自由活塞运动理论进行了研究. Jacobs[17, 18, 19]采用拉格朗日方法数值模拟了自由活塞激波风洞的性能,获得了自由活塞运动特征.Mitsuda等[20]则基于欧拉方法[21]模拟了自由活塞驱动类设备性能. Bensassi等[22]采用任意拉格朗日欧拉方法(arbitrary Lagrangian Eulerian,ALE方法)模拟了高超声速实验设备中的活塞运动,但是未和相关数据进行对比.在ALE方法[23, 24, 25]中,计算网格可像普通拉格朗日方法一样允许其和流体以相同速度运动,也可像欧拉方法一样静止固定.当计算网格在边界处与边界一起运动时,可以保证边界的高分辨率和捕捉能力,而远离界面处的网格运动可以做到网格自适应,对数值解的某些特征可以实现高质量的模拟.

为分析自由活塞压缩管驱动性能和模拟今后的自由活塞激波风洞与膨胀管性能,本文引入ALE方法,数值求解压缩管内气体非定常准一维流动和活塞运动. 为提高时间精度,采用了双时间步长积分方法[26, 27, 28].移动网格控制体面积矢量和网格速度计算满足几何守恒律(geometric conservation law)[29, 30, 31].通过与简单波理论模型及自由活塞运动欧拉方法数值结果对比,来分析方法的可靠性.

1 计算方法

控制方程组为ALE形式的守恒型Euler方程[22, 32].采用双时间步长方法进行积分时,为满足几何守恒律[29, 31],运动网格控制体法向矢量和表面面积采用如下方法[31] 计算 $$ { s}_E \cdot { v}_{G,E} = \dfrac{1}{\Delta t}\left( {\dfrac{3}{2}\Delta \Omega _{c,E}^n - \dfrac{1}{2}\Delta \Omega _{c,E}^{n - 1} } \right) \tag{1}$$ 式中,${ s}_E $和${ v}_{G,E}$ 分别为控制体表面$E$的面积矢量和速度矢量,$\Delta \Omega _{c,E}^n $和$\Delta \Omega _{c,E}^{n - 1}$ 分别为表面 $E$在$n$和$n-1$时间层扫过的体积.不考虑气体泄漏及活塞摩擦时,活塞运动方程为 $$ W_{\rm p} \dfrac{d V_{\rm p} }{d t} = A\left( {p_{\rm b} - p_{\rm f} } \right) \tag{2}$$ 其中,$W_{\rm p} $和$V_{\rm p} $分别是活塞质量和速度,$p_{\rm b} $和$p_{\rm f} $分别是活塞后表面和前表面的压力.气体泄露因素对活塞运动影响可以忽略[14, 15],摩擦效应对活塞运动的影响可以通过在活塞前表面压力项中添加基于实际工程经验和理论分析而确定的因子来考虑[15].

2 计算结果与简单波理论模型的对比

学者Hornung[14]为分析压缩管性能和活塞运动特征,提出了一种活塞运动简单波理论模型.模型假设活塞后部空气压缩管无限长,即从活塞出发的稀疏波没有发生再次反射回活塞后表面的情况.

这里给出两组参数,第1组参数(Case1):空气罐容积50 m$^{3}$;压缩管长度26 m;内径0.6 m;活塞重量500 kg;初始空气压力180 atm;驱动气体摩尔比例$x_{N_2 } : x_{H_2 } = 3:17$;初始压力121 kPa;破膜压力20.2 MPa.第2组参数(Case2)除空气罐容积不一样之外(1 m$^{3}$),其他参数与第1组参数相同.

图1给出了运动网格坐标随时间变化示意图. 活塞两侧附近网格位置与活塞位置变化趋势一致,而靠近压缩管右端膜片的网格接近静止. 图2图3显示了数值和简单波理论模型结果.关于活塞速度、活塞到膜片距离以及活塞前后表面压力分别采用初始空气声速$a_0 $、压缩管内径$D$和初始空气压力$p_0 $进行了无量纲化,二者很吻合. 活塞头部表面压力的数值结果出现了一系列折线,这是驱动气体压缩波在活塞头部和压缩管末端膜片间来回反射的结果(图4).

图1 不同时刻的计算网格 Fig.1 Computational grids at different times
图2 第1组参数条件下破膜前不同时刻活塞速度和到膜片距离 Fig.2 Piston velocity and the distance from the diaphragm at different times before diaphragm rupture for Case 1
图3 第1组参数条件下破膜前不同时刻活塞前后压力 Fig.3 Pressure at the front and back faces of the piston at different times before diaphragm rupture for Case 1
图4 第1组参数条件下压力自然对数位置时间图 Fig.4 X-time diagram of pressure field in logarithmic for Case 1

第2组参数情况下,从图5图6中的比较来看,数值结果和简单波理论模型差别较大.由于空气罐容积很小,很难满足活塞后部空气压缩管无限长的假设,由活塞后表面发出的稀疏波出现了到达压缩管左端壁面后再次反射到活塞底部的现象 (图7),导致压力降低(图6),因此简单波理论模型和数值结果差别较大.

图5 第2组参数条件下破膜前不同时刻活塞速度和到膜片距离 Fig.5 Piston velocity and the distance from the diaphragm at different times before diaphragm rupture for Case 2
图6 第2组参数条件下破膜前不同时刻的活塞前后压力 Fig.6 Pressure at the front and back faces of the piston at different times before diaphragm rupture for Case 2
图7 第2组参数条件下压力自然对数位置时间图 Fig.7 X-time diagram of pressure field in logarithmic for Case 2
3 计算结果与欧拉方法的对比

这里同国外欧拉方法数值结果及实验测量数据[20]进行对比.分别针对压缩管末端出现直接撞击的重活塞(2.0 kg)和出现反弹的轻活塞(0.4 kg)两种情况[20]进行计算.图8显示了两种活塞的运动轨迹. 可以看到:采用ALE方法获得的结果与文献计算和测量结果比较吻合.

图8 破膜前压缩管内2.0/0.4 kg活塞轨迹 Fig.8 The piston trajectory in the compression tube for 2.0/0.4 kg pistons before diaphragm rupture
4 结论

自由活塞压缩管作为自由活塞驱动类的激波风洞和高焓膨胀管驱动段,其驱动能力在很大程度上要影响该类试验设备的性能. 采用ALE (arbitrary Lagrangian Eulerian)数值模拟自由活塞压缩管内的活塞运动和气体流动特征时,耦合求解网格运动和气体流动过程. 为了提高时间计算精度,采用双时间步长方法进行时间积分. 通过和目前存在的简单波理论模型和欧拉数值方法比较验证了这里建立的方法. 该工作为下一步采用ALE方法数值模拟自由活塞激波风洞和自由活塞膨胀管中包括压缩管、激波管和喷管等不同部位的耦合流动提供了基础.

参考文献
1 Hornung HG, Belanger J. Role and technique of ground testing for simulation of flows up to orbital speed. AIAA paper 90-1377, 1990
2 Hannemann K, Schnieder M, Reimann B, et al. The influence and the delay of driver gas contamination in HEG. AIAA paper 2000-2593, 2000
3 Hornung HG. Performance data of the new free piston shock tuunel at GALCIT. AIAA paper 92-3943, 1992
4 Olejniczak J, Wright MJ, Laurence S, et al. Computational modeling of T5 laminar and turbulent heating data on blunt cones. part I:Titan applications. AIAA paper 2005-0176, 2005
5 Itoh K, Komuro T, Sato K, Tanno H, et al. Hypersonic aerodynamic research of HOPE using high enthalpy shock tunnel. AIAA paper 2001-1824, 2001
6 Tanno H, Komuro T, Sato K, et al. Free-flight tests of reentry capsule models in free-piston shock tunnel. AIAA paper 2013-2979, 2013
7 Scott MP, Morgan RG, Jacobs A. A new single stage driver for the X2 expansion tube. AIAA paper 2005-697, 2005
8 Silvester TB, Morgan RG, Jacobs PA. Skin friction measurements in a duct in the X3 superorbital expansion tube. AIAA paper 2004-3551, 2004
9 Jacobs PA, Silvester TB, Morgan RG, et al. Superorbital expansion tube operation:estimates of flow conditions via numerical simulation. AIAA paper 2005-694, 2005
10 Sasoh A, Ohnishi Y, Ramjaun D, et al. Effective test time evaluation in high-enthalpy expansion tube. AIAA Journal, 2001, 39(11):2141-2147
11 Nagata T, Ohnishi N, Sasoh A, et al. Calculation of unsteady flowfield in expansion tube using contact surface resolving technique. AIAA paper 2005-179, 2005
12 Stalker RJ. Area change with a free-piston shock tube. AIAA Journal, 1964, 2(2):396-397
13 Stalker RJ. Development of a hypervelocity wind tunnel. The Aeronautical Journal, 1972, 36:374-384
14 Hornung HG. The piston motion in a free piston driver for shock tubes and tunnels. GALIT Rep. FM88-1, 1988
15 Itoh K, Ueda S, Komuro T, et al. Improvement of a free piston driver for a high enthalpy shock tunnel. Shock Wave, 1998, 8:215-233
16 Tani K, Itoh K, Takahashi M, et al. Numerical study of free-piston shock tunnel performance. Shock Waves, 1994, 3:313-319
17 Jacobs PA. Quasi-one-dimensional modeling of free-piston shock tunnels. AIAA paper 93-0352, 1993
18 Jacobs P A. Quasi-one-dimensional modeling of a free-piston shock tunnel. AIAA Journal, 1994, 32(1):137-145
19 Brandis AM, Gollan RJ, Scott MP, et al. Expansion tube operating conditions for studying nonequilibrium radation relevant to Titan aerocapture. AIAA paper 2006-4517, 2006
20 Mitsuda M, Oda T, Kurosaka T, et al. Numerical and experimental study for free piston expansion tube. AIAA paper 94-2528, 1994
21 Wilson G. Time-dependent quasi-one-dimensional simulations of high enthalpy pulse facilities. AIAA paper 92-5096, 1992
22 Bensassi K, Lani A, Chazot O, et al. Arbitrary Lagrangian Eulerian simulation of a moving piston in hypersonic ground test facility. AIAA paper 2012-3265, 2012
23 Hirt CW, Amsden AA, Cook JL. An arbitrary Lagrangian-Eulerian computing method for all flow speeds. Journal of Computational Physics, 1974, 14:76-85
24 Mügler C, Hallo L, Gauthier S, et al. Validation of an ALE Godunov algorithm for solution of the two-species Navier-Stokes equations. AIAA paper 96-2068, 1996
25 Geuzaine P, Farhat C. Design and time-accuracy analysis of ALE schemes for inviscid and viscous flow computations on moving meshes. AIAA paper 2003-3694, 2003
26 Jameson A. Time dependent calculation using multi-grid with application to unsteady flows past airfoils and wings. AIAA paper 91-1596, 1991
27 Pulliam T H. Time accuracy and the use of implicit method. AIAA paper 93-3360, 1993
28 Örley F, Gamba M. A Study of expansion tube gas flow conditions for scramjet combustor model testing. AIAA paper 2012-3264, 2012
29 Koobus B, Farhat C. Second-order implicit schemes that satisfy the GCL for flow computation on dynamic grids. AIAA paper 98-16042, 1998
30 Chou YJ, Fringer OB. Consistent discretization for simulations of flows with moving generalized curvilinear coordinates. International Journal for Numerical Methods in Fluids, 2010, 62:802-826
31 Mavriplis DJ, Yang Z. Achieving higher-order time accuracy for dynamic unstructured mesh fluid flow simulations:role of the GCL. AIAA paper 2005-5114, 2005
32 Smith R. A Geometrically conservative arbitrary Lagrangian-Eulerian flux splitting scheme. Journal of Computational Physics, 1999, 17(150):268-286
ARBITRARY LAGRANGIAN EULERIAN SIMULATION OF FREE PISTON COMPRESSION TUBE
Li Haiyan, Li Zhihui, Lü Zhiguo, Luo Wanqing, Chang Yu    
Hypervelocity Aerodynamics Institute of China Aerodynamics Research and Development Center, Mianyang 621000, Sichuan, China
Abstract: One of the approach obtaining high-enthalpy flow environments is the pulse facility driven by free piston, including free piston shock tunnel and free piston expansion tube.When using a free piston compression tube as the driver part of an expansion tube or a shock tunnel, the performance of such a facility will be determined to a great extent by its driving ability.Numerical simulation of the piston motion and flow properties in the free piston compression tube has been performed by means of an arbitrary Lagrangian Eulerian approach(ALE).Moving mesh strategy was used for the piston boundary adaptation.The motion of mesh and fluid was solved by coupling method.A dual time-step approach developed in computational fluid dynamics was introduced in the construction of ALE time-integrator.The normal vector and surface area of the mesh element for dynamic mesh were verified to satisfy the geometric conservation law(GCL). Both the comparison of piston positions with those of Eulerian method and the comparison of piston base pressures, piston velocities and piston positions with those of theoretical model based on simple wave assumption are very well.This work established the base on which numerical simulation of the flow at different parts for free piston shock tunnel and for free piston expansion tube will be carried out at the next step such as compressor, shock tube and nozzle, etc.
Key words: computational fluid dynamics    free piston compression tube    arbitrary Lagrangian Eulerian approach    dynamic mesh    dual time-step approach