基于高阶剪切变形理论的四边形求积元板单元及其应用1)
			 | 
		
		
		| 
		  	
						       		申志强, 夏军, 宋殿义, 程盼
						  	
		 | 
	
			
			
				 
					A QUADRILATERAL QUADRATURE PLATE ELEMENT BASED ON REDDY'S HIGHER-ORDER SHEAR DEFORMATION THEORY AND ITS APPLICATION1)
				
			 | 
		
		
		| 
			
						       		Shen Zhiqiang, Xia Jun, Song Dianyi, Cheng Pan
						  	
		 | 
	
	
		 | 
	
	
		| 表5 复合材料层合板无量纲挠度与应力 | 
	
	
		| Table 5 The dimensionless deflection and stress of the laminated plate | 
	
	
		 | 
	
	
		
			   | h/a |  Method |  $\bar{w}$ |  $\bar{\sigma_1}$ |  $\bar{\sigma_2}$ |  $\bar{\sigma_3}$ |       | 0.1 |  1/4 model QEM 7 x 7 |  0.7156 |  0.5470 |  0.3893 |  0.0268 |     | 0.1 |  1/4 model QEM 9 x 9 |  0.7147 |  0.545 6 |  0.388 8 |  0.0268 |     | 0.1 |  1/4 model QEM 11 x 11 |  0.7147 |  0.545 6 |  0.388 8 |  0.0268 |     | 0.1 |  full model QEM 7 x 7 |  0.7147 |  0.545 5 |  0.3888 |  0.0268 |     | 0.1 |  full model QEM 9 x 9 |  0.7147 |  0.545 6 |  0.3888 |  0.0268 |     | 0.1 |  full model QEM 11 x 11 |  0.7147 |  0.545 6 |  0.3888 |  0.0268 |     | 0.1 |  Reddy[32] |  0.7147 |  0.545 6 |  0.3888 |  0.0268 |     | 0.1 |  1/4 model Phan[7] |  0.7161 |  0.5427 |  0.385 5 |  0.0266 |     | 0.1 |  1/4 model Liu[6] |  0.7176 |  0.541 3 |  0.3873 |  0.0266 |     | 0.01 |  1/4 model QEM 7 x 7 |  0.4343 |  0.5387 |  0.2708 |  0.021 3 |     | 0.01 |  full model QEM 7 x 7 |  0.4349 |  0.5401 |  0.271 1 |  0.021 5 |     | 0.01 |  full model QEM 9 x 9 |  0.4343 |  0.5387 |  0.2708 |  0.021 3 |     | 0.01 |  full model QEM 11 x 11 |  0.4343 |  0.5387 |  0.2708 |  0.021 3 |     | 0.01 |  Reddy[32] |  0.4343 |  0.5387 |  0.2708 |  0.021 3 |     | 0.01 |  1/4 model Phan[7] |  0.4320 |  0.5301 |  0.2664 |  0.021 1 |     | 0.01 |  1/4 model Liu[6] |  0.4408 |  0.5349 |  0.2670 |  0.021 1 |      
		 | 
	
	
		 | 
	
	
		 |