EI、Scopus 收录
中文核心期刊
Volume 55 Issue 1
Jan.  2023
Turn off MathJax
Article Contents
Chen Youliang, Chen Qijian, Xiao Peng, Du Xi, Wang Suran. A true triaxial creep constitutive model for rock considering hydrochemical damage. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 159-168 doi: 10.6052/0459-1879-22-329
Citation: Chen Youliang, Chen Qijian, Xiao Peng, Du Xi, Wang Suran. A true triaxial creep constitutive model for rock considering hydrochemical damage. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 159-168 doi: 10.6052/0459-1879-22-329

A TRUE TRIAXIAL CREEP CONSTITUTIVE MODEL FOR ROCK CONSIDERING HYDROCHEMICAL DAMAGE

doi: 10.6052/0459-1879-22-329
  • Received Date: 2022-07-21
  • Accepted Date: 2022-12-08
  • Available Online: 2022-12-13
  • Publish Date: 2023-01-18
  • In order to accurately describe the characteristics of each stage of rock creep behavior under the combined action of acid environment and true triaxial stress, based on the chemical kinetic theory of water-rock interaction, a chemical damage factor considering pH and time is defined. The elastic body, nonlinear Kelvin body, linear Kelvin body, and visco-elastic-plastic body are connected in series, and the actual situation under the action of true triaxial stress is considered at the same time, a damage-creep constitutive model considering the coupling of rock acid corrosion and true triaxial stress is established. The parameters of the deduced model are identified and verified with the existing experimental research results. The yield surface equation of rock under true triaxial stress is obtained by data fitting, and the influence of intermediate principal stress on the creep model is discussed. The results show that the derived constitutive model can well reflect creep properties of the rock under acid corrosion The true triaxial creep characteristics under the action have certain rationality and practicability.

     

  • loading
  • [1]
    Wang W, Li LQ, Xu WY, et al. Creep failure mode and criterion of Xiangjiaba sandstone. Journal of Central South University, 2012, 12(19): 3572-3581
    [2]
    Wang RB, Xu WY, Zhang JC, et al. Study on accelerated creep properties and creep damage constitutive relation for volcanic breccias//Constitutive Modeling of Geomaterials. Springer, 2013: 633-639
    [3]
    刘新喜, 李盛南, 周炎明等. 高应力泥质粉砂岩蠕变特性及长期强度研究. 岩石力学与工程学报, 2020, 39(1): 9 (Liu Xinxi, Li Shengnan, Zhou Yanming, et al. Creep characteristics and long-term strength of high stress argillaceous siltstone. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(1): 9 (in Chinese)
    [4]
    刘东燕, 谢林杰, 庹晓峰等. 不同围压作用下砂岩蠕变特性及非线性黏弹塑性模型研究. 岩石力学与工程学报, 2017, 36(S2): 3705-3712 (Liu Dongyan, Xie Linjie, Tuo Xiaofeng, et al. Study on sandstone creep characteristics and nonlinear viscoelastic plastic model under different confining pressures. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 3705-3712 (in Chinese)
    [5]
    刘文博, 张树光, 陈雷等. 基于统计损伤原理的岩石加速蠕变模型研究. 岩土工程学报, 2020, 42(9): 1696-1704 (Liu Wenbo, Zhang Shuguang, Chen Lei, et al. Research on rock accelerated creep model based on statistical damage principle. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1696-1704 (in Chinese)
    [6]
    张向东, 王睿, 张印等. 砂岩蠕变损伤模型特性. 辽宁工程技术大学学报(自然科学版), 2019, 38(1): 39-43 (Zhang Xiangdong, Wang Rui, Zhang Yin, et al. Characteristics of sandstone creep damage model. Journal of Liaoning Engineering University (Natural Science Edition) , 2019, 38(1): 39-43 (in Chinese) doi: 10.11956/j.issn.1008-0562.2019.01.007
    [7]
    刘文博, 张树光. 基于应力和时间双重影响下岩石蠕变模型研究. 中南大学学报(自然科学版), 2020, 51(8): 2256-2265 (Liu Wenbo, Zhang Shuguang. Research on rock creep model based on dual effects of stress and time. Journal of Central South University (Natural Science Edition), 2020, 51(8): 2256-2265 (in Chinese)
    [8]
    韩阳, 谭跃虎, 李二兵等. 岩石非定常Burgers蠕变模型及其参数识别. 工程力学, 2018, 35(3): 210-217 (Han Yang, Tan Yuehu, Li Erbing, et al. Unsteady Burgers creep model for rock and its parameter identification. Engineering Mechanics, 2018, 35(3): 210-217 (in Chinese) doi: 10.6052/j.issn.1000-4750.2017.01.0025
    [9]
    张亮亮, 王晓健. 岩石黏弹塑性损伤蠕变模型研究. 岩土工程学报, 2020, 42(6): 1085-1092 (Zhang Liangliang, Wang Xiaojian. Research on viscoelastic-plastic damage creep model of rock. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1085-1092 (in Chinese)
    [10]
    丁梧秀, 冯夏庭. 化学腐蚀下灰岩力学效应的试验研究. 岩石力学与工程学报, 2004, 21(23): 3571-3576 (Ding Wuxiu, Feng Xiating. Experimental study on mechanical effect of limestone under chemical corrosion. Chinese Journal of Rock Mechanics and Engineering, 2004, 21(23): 3571-3576 (in Chinese)
    [11]
    刘志航, 王伟, 李雪浩等. 考虑化学腐蚀作用的砂板岩损伤本构模, 安徽工业大学学报(自然科学版), 2020, 37(4): 391-395

    Liu Zhihang, Wang Wei, Li Xuehao, Damage constitutive model of slate considering chemical corrosion. Journal of Anhui Unive-rsity of Technology. 2020, 37(4): 391-395 (in Chinese)
    [12]
    邓华锋, 胡安龙, 李建林等. 水岩作用下砂岩劣化损伤统计本构模型. 岩土力学, 2017, 38(3): 631-639

    Deng Huafeng, Hu Anglong, Li Jianlin. Statistical constitutive model of sandstone deterioration damage under water rock interaction. Rock and Soil Mechanics, 2017, 38(3): 631-639 (in Chinese)
    [13]
    陈四利, 冯夏庭, 李邵军. 岩石单轴抗压强度与破裂特征的化学腐蚀效应, 岩石力学与工程学报, 2003, 4(22): 547-551

    Chen Sili, Feng Xiating, Li Shaojun. Peak value of stress-strain test curve and theoretical cur-ve of limestone. Chinese Journal of Rock Mechanics and Engineering. 2003, 4(22): 547-551 (in Chinese)
    [14]
    Hu DW, Zhou H, Hu QZ, et al. A hydro-mechanical- chemical coupling model for geomaterial with both mechanical and chemical damages considered. Acta Mechanica Solida Sinica, 2012, 25(4): 361-376 doi: 10.1016/S0894-9166(12)60033-0
    [15]
    王伟, 刘桃根, 李雪浩等. 化学腐蚀下花岗岩三轴压缩力学特性试验. 中南大学学报(自然科学版), 2015, 46(10): 3801-3807 (Wang Wei, Liu Taogen, Li Xuehao, et al. Mechanical behaviour of granite in triaxial compression under chemical corrosion. Journal of Central South University (Science and Technology), 2015, 46(10): 3801-3807 (in Chinese)
    [16]
    姜立春, 温勇. AMD 蚀化下砂岩的损伤本构模型. 中南大学学报(自然科学版), 2011, 42(11): 3502-3506 (Wen Yong. Damage constitutive model of sandstone during corrosion by AMD. Journal of Central South University (Science and Technology), 2011, 42(11): 3502-3506 (in Chinese)
    [17]
    Li N, Zhu Y, Su B, et al. A chemical damage model of sandstone in acid solution. International Journal of Rock Mechanics & Mining Sciences, 2003, 40(2): 243-249
    [18]
    冯晓伟, 王伟, 王如宾等. 考虑水化学损伤的砂岩流变损伤本构模型. 岩土力学, 2018, 39(9): 8 (Feng Xiaowei, Wang Wei, Wang Rubin, et al. Rheological damage constitutive model of sandstone considering hydrochemical damage. Rock and Soil Mechanics, 2018, 39(9): 8 (in Chinese)
    [19]
    Kachanov LM. The Theory of Creep. National Lending Library for Science and Technology. England: Boston SPA, 1967
    [20]
    Perzyna P. Fundamental problems in viscoplasticity. Adv. Appl. Mech., 1966, 9(2): 244-368
    [21]
    Aydan Ö, Nawrocki P. Rate-dependent deformability and strength characteristics of rocks//International Symp. on the Geotechnics of Hard Soils-Soft Rocks, Napoli, 1998: 403-411
    [22]
    Aydan Ö. Time Dependency in Rock Mechanics and Rock Engineering. CRC Press, Taylor and Francis Group, 2016: 241
    [23]
    Zhao Y, Wang Y, Wang W, et al. Modeling of non-linear rheological behavior of hard rock using triaxial rheological experiment. Int. J. Rock Mech. Min. Sci., 2017, 93: 66-75
    [24]
    焦丹. 软黏土电渗固结试验研究. [博士论文]. 杭州: 浙江大学, 2010

    Jiao Dan. Experimental study on electroosmotic consolidation of soft clay. [PhD Thesis]. Hangzhou: Zhejiang University, 2010 (in Chinese)
    [25]
    Mogi K. Effect of the triaxial stress system on fracture and flow of rocks. Phys. Earth Planet Inter., 1972, 5: 318-324
    [26]
    Al-Ajmi AM, Zimmerman RW. Relation between the Mogi and the Coulomb failure criteria. Int. J. Rock Mech. Min. Sci., 2005, 42(3): 431-439
    [27]
    Wang W, Liu TG, Shao JF. Effects of acid solution on the mechanical behavior of sandstone. Journal of Materials in Civil Engineering, 2016, 28(1): 1-6
    [28]
    李青麒. 软岩蠕变参数的曲线拟合计算方法. 岩石力学与工程学报, 1998, 17(5): 559-564 (Li Qingqi. Curve fitting calculation method for creep parameters of soft rock. Chinese Journal of Rock Mechanics and Engineering, 1998, 17(5): 559-564 (in Chinese) doi: 10.3321/j.issn:1000-6915.1998.05.012
    [29]
    Zhao J, Feng XT, Zhang X, et al. Time-dependent behaviour and modeling of Jinping marble under true triaxial compression. International Journal of Rock Mechanics and Mining Sciences, 2018, 110: 218-230 doi: 10.1016/j.ijrmms.2018.08.009
    [30]
    Zhao J, Feng XT, Zhang XW, et al. Brittle-ductile transition and failure mechanism of Jinping marble under true triaxial compression. Eng. Geol., 2018, 232: 160-170
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (155) PDF downloads(46) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return