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Abstract The exact analytic solution of the pure bending
beam of metallic foams is given. The effects of relative den-
sity of the material on stresses and deformation are revea-
led with the Triantafillou and Gibson constitutive law (TG
model) taken as the analysis basis. Several examples for indi-
vidual foams are discussed, showing the importance of com-
pressibility of the cellular materials. One of the objects of this
study is to generalize Hill’s solution for incompressible plas-
ticity to the case of compressible plasticity, and a kinematics
parameter is brought into the analysis so that the velocity
field can be determined.

Keywords Metal foams · Relative density · Compressible
plasticity · Constitutive law · TG model

1 Introduction

The low density metallic foam is a new class of enginee-
ring materials with promising mechanical, thermal, electri-
cal and acoustical properties. A wide range of applications
is currently under exploration, including ultra-light structu-
ral component in air and sea vehicles to energy absorbers
in automobile and packing industries, heat dissipation media
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for high power electronics and sound absorbing devices for
noise and vibration control.

Foam materials consist of metal, ceramic and polymeric
foam. In this study, discussion is focused on the metal foam,
which is of ductile-plastic cellular materials. The plastic res-
ponse of metal foams differs fundamentally from that of fully
dense metals, because the foam compacts when compressed,
and the yield criterion is dependent on mean stress or hydro-
static pressure. For their extensive application in practice, it is
necessary to understand fully the strength of cellular mate-
rials in engineering designs in which the mechanical pro-
perties, including the constitutive relation, are of substantial
importance.

Since the publication of monographs on cellular solid
structure and properties given by Gibson and Ashby [1], the
study on constitutive laws under multi-axial loading condi-
tion, of the material has been widely conducted.

The presence of the sub-structure—cells leads to specific
constitutive relation representing rate-dependent compres-
sible plasticity. The mean stress σm or the hydrostatic pres-
sure p must be included into the constitutive equation.

Gibson et al. [2] proposed the first yield/loading surface
equation for metal foams on the basis of the flow rule and
thus the corresponding constitutive law (which is briefly cal-
led the GAZT model) can be obtained. Soon afterwards,
Triantafillou and Gibson [3] proposed another constitutive
law for the material (briefly called the TG model). In these
two constitutive models, the relative density ρ∗/ρs presents
a new material parameter incorporated in the constitutive
law with ρ∗ denoting the density of cellular material and
ρs one of the cell wall material. Recently Miller [4] and
Deshpande and Fleck [5,6] made a series of experimental
and theoretical studies on the constitutive law. Ashby et al.
[7] gave a comprehensive description for different aspects
of the material in their monograph, and recommended DF
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constitutive law. All of these constitutive models present a
common feature that the material is modeled as an equiva-
lent continuous medium with some new material parameters.
Of the constitutive law of continuous model and their appli-
cations, some review papers can be found in [8], and Fan
and coworkers developed some simplified crack models and
perturbation methods to construct several analytic solutions
for crack problems of the material [9].

Apart from the crack problem, the conventional structures
problems, especially the St Venant problems for the mate-
rial are also interesting for engineering applications. Here
we give a description of pure bending beams made of cel-
lular materials based on the TG rigid-hardening constitu-
tive law. This constitutive equation is simpler, and helpful
for constructing some analytic solutions. In addition, it is
rather convenient for revealing the effects of size and geo-
metry configuration of cells, because the relative density
ρ∗/ρs is closely connected with these structure factors. In
the classical plasticity holding true for fully dense material,
there are some pure bending solutions for rigid-perfect plas-
ticity, linear hardening and power-law hardening responses
[10–12], thus providing a basis for comparing and checking
calculation results for the cellular materials.

In this paper, the TG constitutive model is used to figure
out the pure bending behavior of a beam made of rigid-
hardening metal foam materials, and the emphasis is laid
on introducing a kinematics parameter θ̇ and obtaining exact
solutions of the strain rate and velocity field. The present
paper is organized as follows. In Sect. 2, the pure bending
problem of a beam made of foam materials is described,
and the TG constitutive model is introduced in Sect. 3. In
Sect. 4, the stresses of the problem are calculated and some
pictures about the stress variation verses height of the beam
for different relative density ρ∗/ρs are given. In Sect. 5,
a kinematics parameter is introduced into the problem and
exact solutions of the strain rate and velocity field are deri-
ved. Conclusions and discussions on the obtained results are
drawn in Sects. 6 and 7.

2 Statement of the problem

Consider the bending of a uniform rectangular beam with
internal radii a, neutral fiber layer c and external radii b sub-
jected to a couple M at its terminals as sketched in Fig. 1.
The beam is assumed to be made from a rigid-hardening
foam material with yield strength σ ∗

pl . From Fig. 1 we can
see that the bending beam can be divided into two regions. If
the radius r is greater than the radius c of the neutral layer, the
material is in tensile, otherwise the material is compressed,
and both of them are discussed respectively in the following.

The advantage in the coordinate system shown in Fig. 1
is that the constitutive equation would be simpler and the

Fig. 1 Polar coordinate system for the beam after bending

analysis of stress field be independent on the velocity field
(i.e. the stress field can be statically determined).

3 Constitutive equations

The existence of cells distinguished the cellular materials
from conventional dense materials. The effect of cells rests
with the so-called compressible plasticity, which leads to the
requirement that the mean stress σm = σkk

3 or the hydrostatic
pressure p = −σkk

3 must be included in the yield criterion
and the constitutive equation. Triantafillou and Gibson [3]
proposed a simplified model (called the TG model), which
could reveal the effects of size and geometry structure of
the cells. On the other hand, it is simple and can help us to
construct some analytic solutions.

In the following we would like to introduce a constitutive
equations based on the TG model. It is well-known that the
yield/loading surface can be expressed by

� = σ̂ − Y = 0, (1)

where σ̂ is the TG generalized effective stress defined by

σ̂ = σe + 0.03
ρ∗

ρs
σm, (2)

where σe the von Mises effective stress

σe =
√

3

2
si j si j . (3)

Except for some cases, we can also take σe as the Tresca
effective stress and si j the stress deviatoric stress tensor

si j = σi j − 1

3
σkkδi j , (4)
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where σi j is the stress tensor, δi j the Kronecker delta, and the
mean stress σm = 1

3σkk = 1
3 (σrr + σθθ + σzz). In Eq. (1) if

Y = σ ∗
pl , (5a)

where σ ∗
pl is the uniaxial yield strength, then Eq. (1) repre-

sents the initial yield surface. If

Y = Y (h), (5b)

in which h is a parameter for describing the plastic defor-
mation history, then Eq. (1) is the evolution equation of the
yield/loading surface.

For self-similar isotropic rigid-hardening behavior, accor-
ding to the flow rule in plasticity theory we can obtain the
constitutive equation based on the yield/loading surface lis-
ted above as:

ε̇i j =
˙̂σ

H(σ̂ )

∂�

∂σi j
, (6)

where ε̇i j denotes the strain rate tensor, H(σ̂ ) denotes the
hardening modulus and can be obtained by a simple uniaxial
tensor experiment, i.e. H(σ̂ ) = dσ

dε p . In addition, from the
initial yield surface equation we can easily reduce the plastic
constitutive equation to

∂�

∂σi j
= 3

2

1

σe
si j + 0.01

ρ∗

ρs
δi j . (7)

According to this model, we find

˙̂σ = σ̇e + 0.03
ρ∗

ρs
σ̇m . (8)

The mean stress σm is incorporated into the model, and
the effect of the foam material is represented by both the
compressible plasticity, which is different from the dense
material, and the relative density ρ∗

ρs
, which reveals the effect

of the size and geometry configuration of the cell. It is simple
and can help us to construct some analytic solutions.

By using the above equations, the following deformation
geometry relation

ε̇i j = 1

2

( ∂ u̇i

∂x j
+ ∂ u̇ j

∂xi

)
, (9)

and the equilibrium equation

∂σ̇i j

∂x j
= 0, (10)

where σ̇i j is the stress rate, we can derive the solution of
stress, deformation rate and velocity field of the metallic cel-
lular materials according to appropriate boundary conditions.
Since the continuum constitutive model is adopted, we can
deduce analytic solutions, although they are more compli-
cated than those derived from the classical rigid-hardening
theory.

4 Stress field of the pure bending beam

For ideal isotropic rigid-hardening materials, in the case of
plane strain,

εzz = 0, (11)

the stress σzz normal to the x–y planes can be deduced from
the flow theory as

σzz = ν(σrr + σθθ ), (12)

where σrr and σθθ are radial and circumferential stresses,
respectively.

Since σrr , σθθ and σzz are principal stresses, substituting
Eq. (12) into Eq. (1), Eq. (5a) with Eq. (2), then into Eq. (1),
we can obtain the yield criterion for the present case
(

0.01(1+ν)
ρ∗

ρs
+1

)
σrr +

(
0.01(1+ν)

ρ∗

ρs
− 1

)
σθθ = σ ∗

pl ,

(13a)

as a < r < c, and
(

0.01(1+ν)
ρ∗

ρs
− 1

)
σrr +

(
0.01(1+ν)

ρ∗

ρs
+ 1

)
σθθ = σ ∗

pl ,

(13b)

as c < r < b.
Due to the symmetry of the problem in the coordinate

shown in Fig. 1, there is no shear stress, the equilibrium
Eq. (10) takes the form

r
dσrr

dr
= σθθ − σrr , (14)

and the boundary condition is

σrr (a, θ) = 0, σrr (b, θ) = 0. (15)

In addition, at both ends of the beam there are St Venant
boundary conditions, i.e., the conditions of total internal force
and moment at unit thickness must be satisfied:

N =
b∫

a

σθθ dr = 0, M =
b∫

a

σθθrdr. (16)

From Eqs. (13a), (13b), (14) and boundary condition (15),
we obtain immediately

σrr = B

A

[( r

a

)A − 1
]
,

(17a)
σθθ = B + (A + 1)B

A

[( r

a

)A − 1
]
,

as a < r < c, and

σrr = − B

A

[(b

r

)A − 1
]
,

(17b)
σθθ = −B + (1 − A)B

A

[(b

r

)A − 1
]
,

123



412 A. Zhu, T. Fan

as c < r < b, where A and B are the combination of relevant
material constants such as

A = 0.02(1 + ν)
ρ∗
ρs

1 − 0.01(1 + ν)ρ∗/ρs
,

(18)

B = σ ∗
pl

0.01(1 + ν)ρ∗/ρs − 1
,

this indicates that A and B are strongly dependent on the
relative density ρ∗/ρs , which are constants for given mate-
rial.

The radial stress decreases in magnitude with increasing
radius, whereas the circumferential stress increases with
increasing radius due to the yield criterion.

The radius of the neutral layer c is determined by the
continuity condition of the radial stress at the elastic-plastic
boundary

σrr (r → c + 0) = σrr (r → c − 0). (19)

According to Eqs. (17a), (17b) and Eq. (19), one finds

c = √
ab. (20)

It is easy to check the first expression of the St Venant
boundary condition (16). Substituting Eqs. (17b) and (20)
into the second expression of Eq. (16) yields

M = 2Ba2

4 − A2

(b

a

) A+2
2 + Bb2

2(A − 2)
− Ba2

2(A + 2)
. (21)

As an example, we conducted numerical calculation for
the stress field of a beam with size a = 0.1 m, b = 0.3 m
of INCO nickel foam based on the above theoretical results.
The material parameters are [12] E = 0.271 GPa, σ ∗

pl =
0.811 MPa, ν = 0.3.

The distributions of circumferential stress along a trans-
verse section of the beam are shown in Fig. 2 for different
ratios of ρ∗/ρs .

5 Velocity field in a pure bending beam

For the velocity field, it is quite different from the well-known
Hill’s solution [11] of the classical plasticity, here the pro-
blem is strongly dependent on the stress field, and is strongly
rate-dependent as well. The determination of velocity field
needs first a kinematics parameter. According to the charac-
teristics of non-growing layer

(θ + dθ)(r + dr) = rθ, (22)

assume the angle of the bending beam growing steadily with
a rate of θ̇ = dθ

dt . From Eq. (22) one finds that

dr

dt
= − r

θ
θ̇ . (23)

The meaning of the steady angular growth may be descri-
bed by the following mathematical expression

∂

∂t
= ∂

∂θ

dθ

dt
+ ∂

∂r

dr

dt
= θ̇

( ∂

∂θ
− r

θ

∂

∂r

)
. (24)

Thus the stress rate and generalized effective stress rate can
be expressed via Eq. (24) as

σ̇rr = θ̇
( ∂

∂θ
− r

θ

∂

∂r

)
σrr ,

(25)
σ̇θθ = θ̇

( ∂

∂θ
− r

θ

∂

∂r

)
σθθ ,

and

˙̂σ = θ̇
( ∂

∂θ
− r

θ

∂

∂r

)
σ̂ . (26)

We consider the region of a < r < c. Substituting
Eq. (17a) into Eq. (25)

σ̇rr = −θ̇
B

θ

( r

a

)A
,

(27)
σ̇θθ = −θ̇

(A + 1)B

θ

( r

a

)A
,

and then combining Eqs. (2) and (26) yields

˙̂σ = θ̇
B

θ

[
A − 0.01(A + 2)(1 + ν)

ρ∗
ρs

]( r

a

)A
. (28)

In view of Eqs. (6), (7) and (28)

ε̇rr = 1

θ

[
R1

( r

a

)A + R2

]
,

(29)
ε̇θθ = 1

θ

[
R3

( r

a

)A + R2

]
,

where

R1 = θ̇ B

H(σ̂ )

[
A − 0.01(A + 2)(ν + 1)

ρ∗

ρs

]

×
[

A(1 + ν) − (1 − 2ν)

2A
+ 0.01

ρ∗

ρs

]
,

R2 = θ̇ B

H(σ̂ )

[
A − 0.01(A + 2)(ν + 1)

ρ∗

ρs

]
1 − 2ν

2A
, (30)

R3 = θ̇ B

H(σ̂ )

[
A − 0.01(A + 2)(ν + 1)

ρ∗

ρs

]

×
[

A(ν − 2) − (1 − 2ν)

2A
+ 0.01

ρ∗

ρs

]
.

The deformation geometry relation (9) can be written in a
polar coordinate system like

ε̇rr = −∂ u̇r

∂r
,

(31)
ε̇θθ = −∂ u̇r

∂r
+ 1

r

∂ u̇θ

∂θ
,

where u̇r and u̇θ are the radial and circumferential compo-
nents of the velocity field, respectively, and A and B are given
by Eq. (18).
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Fig. 2 The normalized
circumferential stress verses
normalized height of the beam
for different ratios of ρ∗/ρs .
a ρ∗/ρs = 0.04; b ρ∗/ρs = 0.1;
c ρ∗/ρs = 0.5; d ρ∗/ρs = 0.9

In view of Eqs. (29) and (31), one can derive u̇r , which
is then substituted into the second expression of Eq. (31) to
obtain u̇θ by integrating it

u̇r = −
[

a R1

A + 1

( r

a

)A+1 + R2r

]
1

θ
,

(32a)
u̇θ = a

(
R3 − R1

A + 1

)( r

a

)A+1
ln θ.

In similar manner, we can derive the velocity field in the
region of c < r < b

u̇r =
[

bR′
1

A − 1

(b

r

)A−1 − R′
2r

]
1

θ
,

(32b)

u̇θ = a
(

R′
3 + R′

1

A − 1

)(b

r

)A−1
ln θ,

in which

R′
1 = θ̇ B

H(σ̂ )

[
0.01(2 − A)(ν + 1)

ρ∗

ρs
− A

]

×
[

0.01
ρ∗

ρs
− A(1 + ν) + (1 − 2ν)

2A

]
,

R′
2 = θ̇ B

H(σ̂ )

[
0.01(2 − A)(ν + 1)

ρ∗

ρs
− A

]
1 − 2ν

2A
, (33)

R′
3 = θ̇ B

H(σ̂ )

[
0.01(2 − A)(ν + 1)

ρ∗

ρs
− A

]

×
[

0.01
ρ∗

ρs
− A(ν − 2) + (1 − 2ν)

2A

]
.

Analysis of the velocity field in the classical plasticity
theory depends upon the deformation geometry only, howe-
ver, it does not hold for foam materials. For the latter, the

determination of the velocity field depends explicitly upon
the stress solution, and thus depends explicitly upon the
constitutive law.

6 Discussion

Due to the presence of sub-structure—cells, metallic foams
present the feature of compressible plasticity and thus lead to
constitutive equations more complicated than that of incom-
pressible plasticity which describes the behavior of fully
dense solids.

The complexity of the constitutive law makes it diffi-
cult for solving boundary value problems of foam mate-
rials. Even if exact solutions are available in some cases,
the incompressible condition holding true in the classical
theory of plasticity cannot be used, and some new methods
must be developed for the stress analysis of structures made
of new materials. The present work is an exploration in this
direction.

For pure bending beams as suggested by Hill but made of
foam materials, the stress field can be statically determined
and the results are obtained with some numerical illustrations
shown in Fig. 2, where there are some similar features com-
pared with results (e.g. the Hill’s solution) given by classical
plasticity. Since the present solutions are strongly dependent
on the relative density ρ∗/ρs of the foam material, the diffe-
rences between the two are distinct and understandable.

The solution of the velocity field is quite different from
Hill’s solution of classical plasticity, here the determination
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of velocity field is strongly dependent on the stress field, and
the results are given by formulas (32a), (32b).

7 Conclusion

The TG model for the material is used to describe the beha-
vior of a pure bending beam and an exact analytic solution
is given, in which the effects of relative density of the mate-
rials on the stresses and deformation are revealed. Several
examples for individual foams are discussed, showing the
substantial importance of the cellular material’s compressi-
bility. A kinematics parameter is introduced into the analysis
so that the velocity field can be determined. These insights
may be helpful for developing structural stress analyses of
the new material.
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