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Abstract Slotted breakwaters have been used to pro-
vide economical protection from waves in harbors where
surface waves and currents may co-exist. In this paper,
the effects of currents on the wave scattering by slotted
breakwaters are investigated by using a simple model.
The model is based on a long wave approximation. The
effects of wave height, barrier geometry and current
strength on the reflection and transmission coefficients
are examined by the model. The model results are com-
pared with recent experimental data. It is found that
both the wave-following and wave-opposing currents
can increase the reflection coefficient and reduce the
transmission coefficient. The model can be used to study
the interaction between long waves and slotted break-
waters in coastal waters.

Keywords Wave scattering · Wave-structure
interaction · Slotted breakwaters

1 Introduction

Breakwaters that are in the form of vertical slotted
barriers have been used to provide economical protec-
tion from waves in harbors or marinas (Isaacson [1]).
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One example is the concrete pile breakwater at Pass
Christian, Mississippi, which consists of 1.4 m diameter
piles with an average spacing of 15.2 cm between piles
[2]. The prediction of the wave scattering by a vertical,
slotted barrier is of interest for design purposes. Exten-
sive researches have been carried out, both theoretically
and experimentally, on the interaction between the slot-
ted structures and surface waves without the presence
of currents.

Wiegel [3] and Hayashi [4] studied the scattering
of waves by the pile breakwaters, and provided sim-
ple expressions for the calculation of the transmission
coefficients. Kakuno and Liu [5], Yu [6] and Isaacson [1]
studied, theoretically or experimentally, the interaction
between waves and slotted/porous structures [7–10].
Chwang and Chan [11] reviewed the recent studies of
wave–porous structure interaction. Previous studies
have shown that the loss of wave energy was related
to the frictional effects caused by flows through gaps
between the piles or bars.

In coastal waters, surface waves and tidal currents
co-exist. The surface waves may follow the tidal cur-
rents (for flood flows) or oppose the tidal currents (for
ebb flows). Typically, the velocity of the tidal currents
is comparable to the wave orbital velocity. Few works
on the wave scattering by a slotted breakwater in the
presence of a steady current were published. Rey et al.
[12] experimentally studied the scattering of waves by a
submerged horizontal plate. For the scattering of surface
waves by a slotted barrier in the presence of currents,
it is expected that currents can significantly change the
hydrodynamic coefficients and affect the hydraulic per-
formance of the breakwaters. We have not found any
published theoretical work on the effects of currents on
the scattering of long waves by slotted breakwaters.
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Fig. 1 Definition sketch for the interaction between a slotted
barrier and surface waves riding on a following current

In this paper, the interaction between long waves
(swells) and slotted breakwaters is considered. An
analytical model is presented to examine the effects
of currents on the scattering of long waves by slot-
ted breakwaters in the presence of a uniform current.
The predicted transmission and reflection coefficients
are compared with the experiments.

2 Theoretical analysis

Let the x coordinate axis point in the direction of wave
propagation, and the horizontal velocity in the x-direc-
tion is denoted by u. The z coordinate axis points ver-
tically upwards with its origin at the still water level. In
this coordinate system, the bottom is located at z = −d,
and the moving surface is described by z = η(x, t) with t
being time. A wave barrier in the form of slotted struc-
ture of porosity n is located at x = 0 and extends from
the bottom to the surface. Long waves are considered as
propagating on a current, which can be represented by
a uniform current ū, as shown in Fig. 1. The long waves
are assumed to be normal to the barrier.

2.1 Wave solutions in the far fields

Away from the barrier, the equations governing the long
wave motion are those of long-crested shallow water
waves with no bed slope or friction . The equations gov-
erning the long waves can be written as [13]

∂η

∂t
+ ∂(hu)

∂x
= 0, (1)

∂u
∂t

+ u
∂u
∂x

= −g
∂η

∂x
, (2)

where the gravitational acceleration is g, and the instan-
taneous water depth h = d + η with η being the surface
displacement and d the still water depth.

The total horizontal velocity and the total surface dis-
placement may be written as

u = ū + ũ, η = η̄ + η̃, (3)

where the over-bar represents the time–mean compo-
nent (averaged over one wave period) and the tilde rep-
resents the fluctuating component. The wave-induced
set-up or set-down, which contributes to η̄, normally is
small and will be ignored in this analysis [13]. Therefore,
the mean surface displacement η̄ is due purely to the
energy loss associated with the mean flow through the
barrier. The wave-induced secondary currents, compa-
rable to the wave-induced Stokes drift, are also ignored
in this study [14,15]; thus the time-mean velocity ū is the
same as that in the absence of waves.

Away from the breakwaters, the nonlinear wave-wave
interaction terms in Eqs. (1) and (2) can be ignored to
give the following linearized governing equations [16]

∂η̃

∂t
+ h̄

∂ũ
∂x

+ ū
∂η̃

∂x
= 0, (4)

∂ũ
∂t

+ ū
∂ũ
∂x

= −g
∂η̃

∂x
, (5)

where the mean water depth is h̄ = d+η̄. For long waves,
the fluctuating component of the surface displacement,
η̃, can be represented by

η̃ = Re
(
aei(ωt−γ kx)

)
, (6)

where the operator Re means taking the real part of its
argument. The wave angular frequency is ω, the wave-
number k, and the wave amplitude a. For waves propa-
gating in the positive x-direction γ =1, otherwise γ =−1.

The fluctuating horizontal velocity ũ, which is associ-
ated with the surface displacement specified by Eq. (6),
is found from the governing Eqs. (4) and (5) [16],

ũ = Re
(

γ gka
ω − γ ūk

ei(ωt−γ kx)

)
= Re

(
γ a

√
g

h̄
ei(ωt−γ kx)

)
.

(7)

In deriving the above expression for ũ, the following lin-
ear dispersion relationship for long waves is obtained,

(ω − γ kū)2 = gk2h̄. (8)

Referring to Fig. 2, the surface displacements and veloci-
ties at x = x− and x = x+, which are immediately before
and after the barrier, can now be written as

η− = η̄− + η̃−, η+ = η̄+ + η̃+, (9)

u− = ū− + ũ−, u+ = ū+ + ũ+, (10)
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with

η̃− = Re
(

aei(ωt−kIx−) + Raei(ωt+kRx−)

)
, (11)

η̃+ = Re
(

Taei(ωt−kT x+)

)
, (12)

ũ− =
√

g
√

h̄−
Re

(
aei(ωt−kIx−) − Raei(ωt+kRx−)

)
, (13)

ũ+ =
√

g
√

h̄+
Re

(
Taei(ωt−kT x+)

)
, (14)

where the mean water depth at x = x± is h̄± = d+η̄±; ū±
and η̄± are the mean velocity and surface displacement
at x = x±; ũ± and η̃± are the fluctuating velocity and sur-
face displacement at x = x±. R and T are the reflection

and transmission coefficients. For |ū±| <

√
gh̄± (subcrit-

ical flows), the values of wavenumber kI , kR and kT are
given by

kI = ω
√

gh̄− + ū−
, (15)

kR = ω
√

gh̄− − ū−
, (16)

kT = ω
√

gh̄+ + ū+
, (17)

respectively, which are determined from the linear dis-
persion relationship, Eq. (8).

2.2 The matching conditions at the barrier

In the absence of currents, the expressions for the match-
ing conditions at a slotted barrier have been given by
Mei et al. [18]. The method of Mei et al. [18] is also valid
for long waves riding on a uniform current, and is sum-
marized below. Details can be found in either Mei et al.
[18] or Sect. 6.1 of Mei [13] (pp. 254–268).

Referring to Fig. 2, when |x− − x+| � d � L, with
d being the depth of water and L the wave length, the
mass storage between x− and x+ can be neglected so
that conservation of mass gives the following condition

(ū− + ũ−)(h̄− + η̃−) = (ū+ + ũ+)(h̄+ + η̃+). (18)

Similarly, the energy storage between x− and xc

(which designates the location of the vena contracta)
can be neglected from the energy equation, as long
as |x− − xc| � d � L holds. The energy storage was

Fig. 2 A top view of near and far fields for a typical slot taken
from a slotted barrier when both u− and u+ are in the direction
shown in the figure

also neglected in other studies [13,17]. The energy loss
associated with the turbulent jet flows between xc and
x+ cannot be ignored. However, because |x+ − xc| �
d � L, the momentum storage and the frictional forces
between xc and x+ are small, and thus can be ignored
when compared with the momentum flux through the
cross sections of the jet flow at xc and x+. By combining
the energy equation between x− and xc and the momen-
tum equation between xc and x+, the following expres-
sion for the head loss due to a slotted barrier can be
obtained

η− − η+ = f
2g

|u+|u+ + �

g
∂u+
∂t

= f
2g

|ū+ + ũ+|(ū+ + ũ+) + �

g
∂ũ+
∂t

, (19)

where the last term on the right-hand side of Eq. (19) is
an inertia term, with � being the length of the jet flow
through the barrier [18]. The friction factor f depends
on the porosity and the shape of cylinders of the slot-
ted barrier. The following empirical expression for f was
given by Mei et al. [18]

f =
( 1
εCc

− 1
)2

,

where Cc is the contraction coefficient of the jet flow,
and needs to be determined experimentally. (A similar
friction coefficient f has been used in the study of waves
in porous media where f depends on the size and shape
of solid grains and the porosity of the porous structure
[7–9].) The derivation of Eq. (19) is identical to that
given in Ref. [18] for the case where ū+ = 0, thus will
not be repeated here. However, an alternative deriva-
tion of Eq. (19) based on the concept of drag coefficient
is provided in Appendix A of this paper, where it is
shown that the head loss given in Eq. (19) is directly
related to the wave force acting on a slotted barrier.

In this study, the friction factor f used in Eq. (19)
is treated as a fitting parameter. Zhu and Chwang [17]
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adopted the empirical expression of f given by Mei et al.
[18], and treated the contraction coefficient Cc as a fitting
parameter. These two methods are of the same empiri-
cal nature, but the former is simpler to implement. Even
though the matching conditions were derived for slotted
barriers, they can be used for perforated barriers as well,
with f being regarded as the empirical friction factor for
the perforated barrier.

In deriving Eqs. (18) and (19), it was assumed that
|x− − x+| � d � L and |x− − x+| = O(�) by defini-
tion [13]. Obviously, these assumption fail when the bar-
rier is very thick. The jet length �, i.e., |x−−x+|, increases
with decreasing porosity of the barrier [5]. However,
the wave energy transmitted through the barrier also
decreases with decreasing porosity of the barrier. Con-
sequently, the momentum or energy flux at x = x− dom-
inate that at x = x+, and the reflection and transmission
coefficients obtained by using Eqs. (18) and (20) are
possibly acceptable even when the porosity is small. In
practice, the porosity of slotted breakwaters is normally
large enough to allow the passage of ordinary fish.

As |x− − x+| � d � L, the matching condition
(19) can be asymptotically applied at x = 0 [13,17]. The
matching condition given by Eq. (19) is nonlinear; time-
mean motion and higher harmonic wave motion may be
induced by the nonlinear wave–wave interaction near
the barrier. From Eq. (19), the matching condition for
wave motion between x = x− and x = x+ can be
written as

η̃− − η̃+ = f
2g

|ū+ + ũ+|(ū+ + ũ+)

+�

g
∂ũ+
∂t

− f
2g

|ū+|ū+, (20)

where the last term is simply the head loss due to the
steady current.

For the interaction between waves and the slotted
barrier without the presence of currents, Mei et al. [18]
showed that the higher harmonics, owing to the nonlin-
ear matching condition at the barrier, contribute little to
the wave reflection and transmission coefficients of the
first harmonic. They also showed that the inertia term in
Eq. (20) is small for long waves and can be ignored. How-
ever, in the study of the wave interaction with multiple
slotted barriers, the inertia term may affect the phase of
the scattered waves and the optimum chamber width at
which the reflection coefficient takes its minimum [17].
Thus, in most of previous studies of wave scattering by
multiple slotted walls, � was not set to zero. In this study,
the higher harmonics generated by the barrier is ignored
and � = 0 is used for a single slotted barrier. Therefore,
as far as the first harmonic wave motion is concerned,

the matching condition (20) can be linearized by

η̃− − η̃+ = β

√
d
g

ũ+, (21)

where the factor
√

d/g is introduced to make the linear
dissipation coefficient β dimensionless. The linear dis-
sipation coefficient β needs to be determined in such
a way that the losses of the wave energy predicted by
Eqs. (21) and (20) are equivalent. To achieve the equiv-
alent energy loss, β is determined by

β = f

2
√

gd

|ū+ + ũ+|(ū+ + ũ+)ũ+
ũ+ũ+

, (22)

with the over-bar indicating the time-average over one
wave period [13]. Note that the last term in Eq. (20),
which is time-independent, does not contribute to the
value of β in Eq. (22). Equation (22) is called Lorentz’s
principle of equivalent work [7,8,13,18]. It is worth not-
ing that if ū+ = 0, the above expression for β reduces to
that given by Mei [13] for pure waves.

2.3 Reflection and transmission coefficients

Following Mei [13], the reflection and transmission
coefficients are determined by matching the far field
solutions at x = 0. Substituting expressions for ũ± and
η̃± given by Eqs. (9) and (10) into the matching con-
ditions (18) and (21), the following expressions for the
reflection and transmission coefficients are obtained

T =
2

√(
h̄−
d

)(
h̄+
d

)

(
β +

√
h̄+
d

)(√
h̄−
d

− ū−√
gd

)
+ h̄+

d
+ ū+√

gd

√
h̄+
d

,

(23)

R =

(
β +

√
h̄+
d

)(√
h̄−
d

+ ū−√
gd

)
− h̄+

d
− ū+√

gd

√
h̄+
d

(
β +

√
h̄+
d

)(√
h̄−
d

− ū−√
gd

)
+ h̄+

d
+ ū+√

gd

√
h̄+
d

.

(24)

The above expressions are exact so far, but for most of
the practical problems, further approximations are pos-
sible. Note that ū±/

√
gd is just the Froude number for

the mean flows.
When the mean flow velocity is moderate and the

porosity is not too small, the change in the surface ele-
vation associated with the head loss of the mean flow
through the barrier is small, i.e., η̄− = O(η̄+) � d.
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In this case, one can have the following approximations:
h̄− ≈ d, h̄+ ≈ d, ū− ≈ ū, and ū+ ≈ ū with ū = (ū− +
ū+)/2. Consequently, the reflection and transmission
coefficients given by Eqs. (23) and (24) can be approxi-
mated by

T = 2

β(1 − ū/
√

gd) + 2
,

R = β(1 + ū/
√

gd)

β(1 − ū/
√

gd) + 2
.

(25)

In view of the long wave solution given by Eq. (7) and
the definition of β given by Eq. (22), it can be seen that
β in Eq. (25) is a function of f , H/d and ū/

√
gd, with

H = 2a being the height of the incident waves. Thus, the
reflection and transmission coefficients given by Eq. (25)
will be functions of f , H/d and ū/

√
gd as well.

When the mean current velocity is zero, the expres-
sions for T and R given by Eq. (25) reduce to those
given by Mei [13] or Yu [6] for pure waves. In coastal
waters, normally the tidal current is comparable to the
wave orbital velocity; thus, the difference between the
mean surface elevation before and behind the barrier is
usually small and the reflection and transmission coeffi-
cients given by Eq. (25) can be used in most practi-
cal designs of the slotted breakwaters with acceptable
accuracy.

3 Results and discussion

3.1 Experiments

As there was no published experimental data for the
wave scattering by slotted barriers in the presence of
currents, a series of experiments was conducted in the
Hydraulics Laboratory, HKUST, to measure the hydro-
dynamic coefficients of wave scattering by a slotted
barrier in the presence of wave-opposing currents. The
details of the experiments were reported in Ref. [19].

The length of the wave flume was 12.5 m, and the still
water depth was fixed at d = 0.3 m (

√
gd = 1.715 m/s).

The slotted barrier was made of aluminum bars of width
19 mm and thickness 6 mm. The porosity of the bar-
rier was fixed at n ≈ 0.21. A general view of the wave
flume showing waves interacting with the slotted bar-
rier is shown in Fig. 3. Two wave gages of resistance type
were placed on the right side of the barrier at distances
2.1 and 2.375 m away from the barrier and one wave gage
on the left 2.7 m away from the barrier (wave gages are
not shown in the photo). The scattering of relative long
waves by a slotted barrier was investigated for waves

Fig. 3 A general view of wave flume showing waves interacting
with the slotted barrier in the presence of a current. Current flows
from the left to the right and waves propagate from the right to
the left

opposing the currents1.The period of the regular inci-
dent waves was fixed at Tw = 1.1 s in all experiments,
so that the dimensionless water depth d/L = 0.188,
with L being the wave length in the absence of the cur-
rent. The height of the regular incident waves (H = 2a)
varies roughly from H = 0.03 m to H = 0.07 m for
three different current velocities, ū = 0, ū = −0.10 m/s,
and ū = −0.15 m, respectively. The dimensionless wave
height varies from H/d ≈ 0.1 to H/d ≈ 0.23 and the
three dimensionless current velocities are ū/

√
gd = 0,

ū/
√

gd ≈ −0.06 and ū/
√

gd ≈ −0.09, respectively.
The measured reflection and transmission coefficients

were calculated by a two-point method, which took the
effects of current into account [12]. The measured reflec-
tion and transmission coefficients have a relative error
less than 10%, due mainly to the reflected waves from the
wave absorder at the end of the flume and the method
used to separate the incident and reflected waves [20].

In the following, the predicted hydrodynamic coeffi-
cients R and T are compared with the measured ones.
The model itself may have error when compared with
the experimental data because the long wave condi-
tions were not exactly satisfied by the laboratory condi-
tions. In fact the error in the present model comes from
two sources: (a) approximation of open-channel flow
by a uniform flow, and (b) long wave approximation.
Mei [13] (Sect. 6.1) compared the experimental data of
Hayashi [4] with the theory based on long wave approx-
imation, and concluded that long wave approximation

1 Due to the limitation of the facility, there was difficulty in study-
ing the scattering of long waves that satisfy d/L < 1/20.
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can provide a reasonable estimation of reflection and
transmission coefficients for d/L ∼ 0.16 (which were
used in the experiments of Hayashi [4]). In analyzing the
present experimental data obtained for d/L ∼ 0.188, it
is believed that the aforementioned two types of errors
are comparable to the error in the measured hydrody-
namics coefficients.

3.2 Effects of current strength

Figure 4 shows a comparison between the predicted
and measured reflection and transmission coefficients
for the dimensionless wave height H/d ≈ 0.2. Experi-
ments show that the reflection coefficients increase with
increasing strength of the opposing current, while the
transmission coefficients decrease significantly. These
trends are well captured by the theory, as indicated in
Fig. 4. The predicted and measured reflection and trans-
mission coefficients are for ū/

√
gd = 0 and ū/

√
gd = −

0.06. It was found that a value of f = 12.42 provided the
best fit between the measured and predicted reflection
and transmission coefficients for waves alone
(ū/

√
gd = 0). As f is independent of flow conditions,

the same value of f = 12.42 will be used throughout this
study for all other cases where ū �= 0.

Larger error exists between the predicted and mea-
sured hydrodynamic coefficients for ū/

√
gd = − 0.09,

which is not shown in Fig. 4. It was found during the
experiments that the waves were quite unstable and easy
to break for waves opposing the relative strong cur-
rent. Therefore, it is expected that a relative large error
may exist in the measured hydrodynamic coefficient for
strong opposing currents.

Fig. 4 Comparison with experiments. Squares and circles are the
reflection and transmission coefficients measured U = ū/

√
gd

Fig. 5 Variation of dissipation coefficient with current strength.
U = ū/

√
gd

Figure 5 shows the variation of the linear dissipa-
tion coefficient β with the current strength for H/d ≈
0.2, same as in Fig. 4. Compared with pure waves, the
mean current can increase the the turbulence intensity
in the neighborhood of the slotted barrier. Thus, for both
the wave-following currents and the wave-opposing cur-
rents, the linear dissipation coefficient β increases with
the increasing current strength. In other words, the flow
resistance and the dissipation of wave energy due to
the barrier can be increased by both the wave-opposing
and wave-following currents. For the example given in
Fig. 4, when |ū/

√
gd| is about 0.05 or larger, the dissipa-

tion coefficient varies linearly with the current strength
ū/

√
gd, and can be approximated by β ∝ f |ū/

√
gd|, i.e.,

β is not affected by the wave conditions. The wave fre-
quency and wave height will affect the linear energy dis-
sipation coefficient only when the current is very weak
relative to the waves.

3.3 Effects of wave height

The variation of reflection and transmission coefficients
with wave height is shown in Fig. 6. The friction coeffi-
cient f = 12.42 was used in the model for both ū = 0 and
ū/

√
gd = −0.06. It can be seen that the predicted R and

T agree well with the measured. The transmission coeffi-
cient decreases with the increasing wave height, but the
reflection coefficient increases. When an opposing cur-
rent with a strength ū/

√
gd = −0.06 is present, both the

reflection and transmission coefficients are insensitive
to the change in the wave height. The insensitivity of R
and T to the wave height can be explained by the obser-
vation that β ∝ f |ū/

√
gd| for |ū/

√
gd| = 0.06 (see Fig. 5),

which implies that, for a given barrier, R and T have a
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Fig. 6 Variation of reflection and transmission coefficients with
wave height. Experimental data are for U = ū/

√
gd = −0.06.

Squares-measured reflection coefficients; circles-measured trans-
mission coefficients. Theory solid lines U = ū/

√
gd = − 0.06;

dashed lines ū = 0

strong dependence on ū/
√

gd and a weak dependence
on the wave height.

3.4 Effects of the barrier geometry

No experimental data is available for the effects of bar-
rier geometry on the reflection and transmission coeffi-
cients in the presence of currents. Here, by using the
present model, the effects of frictional coefficient f on
the reflection and transmission coefficients when waves
are riding on currents are examined. Normally, f
increases when the porosity of the barrier decreases.

Figure 7 shows the variation of R and T with the fric-
tional coefficient f for H/d = 0.1. For a given mean
current velocity, the reflection coefficient increases with
increasing f , but the transmission coefficient decreases.
This trend is the same as that for pure waves (see e.g.,
Yu [6]), not affected by the presence of the current.
Within the range of f considered in Fig. 7, some calcu-
lated reflection coefficients for ū/

√
gd > 0.06 are greater

than unity, which can be explained by the conservation
of wave action (see, for example, Sect. 3.6 in Mei [13]).
According to the conservation of wave action, the wave
height may be increased by an opposing current and
reduced by a following current. Therefore, for the case
where the incident waves are following the current, it is
possible that the height of the reflected waves is greater
than that of the incident waves when the current is strong
and the friction factor f is large, resulting in a reflection
coefficient greater than unity.

Fig. 7 Variation of reflection and transmission coefficients with
the friction coefficient f . U = ū/

√
gd

Fig. 8 Definition sketch for the derivation of the expression for
the head loss due to a slotted barrier based on the drag coefficient.
The gap between two adjacent cylinders is s − b

4 Concluding remarks

An analytical model is presented to study the effects of
currents on the scattering of long waves by slotted barri-
ers in the presence of currents. The theory is based on the
long wave equations without friction, and is an exten-
sion of the theory described by Mei et al. [18] for pure
waves. The dissipation of wave energy caused by the
barrier is modeled by a linearized dissipation coefficient
determined by Lorentz’s principle of equivalent work.
For a moderate current strength, the predicted reflec-
tion and transmission coefficients agree reasonably well
with the experimental results presented in this paper,
showing that the model is promising in modeling the
wave scattering by slotted barriers in the presence of a
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current. Model results show that both the wave-follow-
ing and wave-opposing currents can increase the reflec-
tion coefficient and reduce the transmission coefficient.
The model can be used to study the interaction between
long waves and slotted breakwaters in coastal waters.
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5 Appendix

5.1 Derivation of the expression for the head loss due
to a slotted barrier

The head loss due to a slotted barrier can also be studied
by examining the wave force on a rectangular cylinder.
In the following discussion, it is assumed that |x−−x+| �
d � L and the porosity, hence the gap between the two
adjacent cylinders, is not zero. These two assumptions,
together with the long wave approximation, have been
used in deriving Eq. (19) by Mei, et al. [18].

Referring to Fig. 8, let the drag force per unit length
of the cylinder be FD, which can be modeled by the
well-known Morison equation [21,22]

FD(z, t) = ρCDb
u+|u+|

2
+ ρCMeb

∂u+
∂t

, −h < z < 0,

(A1)

where e is the thickness of the rectangular cylinder, b
the width of the cylinder, CD the drag coefficient and
CM the inertia coefficient. The velocity u+ is evaluated
at x = x+. The application of Morison equation in com-
bined wave-current flows has been discussed by Wang
et al. [23]. As |x− − x+| is very small as compared with
the water depth and the wave length, the frictional force
acting on the sides of the control volume and the net
momentum change in the horizontal direction can be
ignored for long waves. The time rate change of the
momentum in the control volume shown in Fig. 8 is bal-
anced by the net force in x direction, i.e.,

s(p− − p+) − FD ≈ ρs|x− − x+|∂u+

∂t
, (A2)

where s is the spacing between the adjacent gaps and
h̄− ≈ h̄+ is assumed. Other forces in the momentum
Eq. (A2) can be ignored as long as |x− − x+| � d �
L. For long waves, the dynamic pressure p is given by

p = ρgη, thus Eq. A2 can be written as

η− − η+ ≈ CD
b
s

u+|u+|
2g

+
(CM

g
e

b
s

+ |x− − x+|
g

)∂u+
∂t

.

(A3)

After comparing Eqs. 19 and A3 and noting (s − b)/s =
ε, the following two relationships are obtained

f = CD(1 − ε), � = e CM(1 − ε) + |x− − x+|. (A4)

Physically, the friction coefficient f is related to the drag
coefficient CD, and the jet length � is related to the
inertia coefficient CM. Similar expression for f has been
given by Madsen [8] for waves in porous media.

It should be noted that CD and CM for a slotted bar-
rier are different from those for a single cylinder in an
oscillatory flow, and have to be determined experimen-
tally. Because of the relationship (A4), it is expected
that, just like CD, the friction factor f will have a weak
dependency on the Strouhal number, as suggested by
Mei [13] (Sect. 6.15).
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