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Abstract Finite element simulations are carried out to
examine the mechanical behavior of the metallic hollow
sphere (MHS) material during their large plastic defor-
mation and to estimate the energy absorbing capac-
ity of these materials under uniaxial compression. A
simplified model is proposed from experimental obser-
vations to describe the connection between the
neighboring spheres, which greatly improves the com-
putation efficiency. The effects of the governing physi-
cal and geometrical parameters are evaluated; whilst a
special attention is paid to the plateau stress, which is
directly related to the energy absorbing capacity. Finally,
the empirical functions of the relative material density
are proposed for the elastic modulus, yield strength and
plateau stress for FCC packing arrangement of hollow
spheres, showing a good agreement with the experimen-
tal results obtained in our previous study.
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1 Introduction

Cellular materials such as honeycombs and foams are
widely applied in cushioning, packaging and other
impact/shock protecting owing to their excellent energy-
absorbing capacity with a long plateau range and a
controllable plateau stress. However, traditional cellu-
lar solids, especially closed-cell metallic foams, have
large varieties in the size, shape and distribution of
cells as produced in the manufacturing process, which
make their stress–strain relation highly unrepeatable.
Consequently, it is difficult to precisely monitor their
mechanical properties.

Now the development of the metallurgy allows the
production of single hollow sphere with highly con-
trolled characteristics (e.g., diameter and wall thickness)
from lots of base materials, and those hollow spheres
can be bonded by epoxy resin, soldered and sintered to
form new types of cellular materials. A detailed review
on the manufacturing process was made by Waag et al.
[1]. Compared with conventional foams, these materi-
als have much better geometric uniformity and fewer
defects, resulting in good mechanical and acoustic prop-
erties. Among them, the sintered metallic hollow sphere
(MHS) materials are most suitable for energy absorp-
tion because of the high strength and ductility of both
the bonding and base materials.

The hollow sphere foams first attracted attentions in
1990s, when lots of metallurgists began to develop new
types of cellular materials in view of the drawbacks of
the traditional foams. The early studies were focused on
the fabrication. On the basis of an experimental study
of MHS specimens made of stainless steel, Lim et al.
[2] found that their quasi-static behavior is quite close
to that of the open cell foams. Adopting the concept of
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Fig. 1 Samples of the cellular materials composed of metallic
hollow spheres and bonded by sintering technique (MHS)

regular stacking of atoms, Sanders et al. [3,4] defined
some elementary parameters (such as bonding angle,
relative sphere wall thickness h/R) and proposed fairly
good finite element models for those with regular stack-
ing patterns. Meanwhile, similar finite element models
were also proposed by Gasser et al. [5–7]. However, all
these studies were restricted to the elastic response and
the initial yielding behavior, probably because of the
dramatic increase of the computational time in the sim-
ulation of the large plastic deformations of their models.

Systematic experimental and analytical studies were
also reported on two types of MHS specimens made of
mild steel in previous papers [8–10], where the deforma-
tion process, the quasi-static behavior and the dynamic
response were described in detail. Observation of the
cross-section of the MHS sample shows that simplified
finite element models can be adopted to improve the
computation efficiency. By simulating the large plastic
deformation of the MHS material, the present paper
is aimed to further understand the large deformation
mechanisms and the effects of the parameters which
govern the mechanical behaviors.

2 Experimental results of two types of MHS materials

Comprehensive experimental studies [8] were carried
out to examine the mechanical properties of two types
of MHS specimens with relative densities less than 6%
shown in Fig. 1. The radii of the two types of spheres were
RL = (1.50±0.13) mm (large spheres) and RS = (0.90 ±
0.13) mm (small spheres), with the thicknesses of hL =
(0.049 ± 0.013) mm and hS = (0.049±0.011) mm, respec-
tively. The relative densities of the MHS materials were
ρ∗

L/ρ0 = 0.052±0.002 and ρ∗
S/ρ0 = 0.045±0.002, respec-

tively, provided that the density of the base material
(mild steel) is ρ0 = 7, 800 kg/m3. The bonding angle θ ,
referring to a half of the connecting neck, was obtained
as θL ∈ (5◦, 20◦) and θS ∈ (5◦, 30◦), respectively.

The quasi-static uniaxial compression tests were per-
formed on a universal testing machine MTS 810 with

a load cell of 50 kN and a loading speed of 1 mm/min.
The MHS specimens were cut from the original mate-
rial plate in the form of a cuboid (36 mm × 36 mm ×
25 mm) or a cylinder (φ25 mm × 25 mm). A fairly good
repetition of the stress–strain curves was achieved and a
typical nominal stress–strain curve for a specimen made
of the MHS material with smaller spheres is plotted in
Fig. 2a. The stress–strain curve can be divided into three
distinct phases: the elastic phase, the “plateau” phase
and the densification phase, while the average “plateau”
stress is defined as:

σ ∗
pl =

∫ εD
εY

σ ∗(ε)dε

εD − εY
, (1a)

where εY and εD correspond to the yield strength and
the strain at densification; εD is defined as the strain
value corresponding to the stationary point in the “effi-
ciency” versus strain curve where the “efficiency” ren-
ders a global maximum, i.e., [dη(ε)/dε]ε=εD = 0, as
shown by the dashed line in Fig. 2a, where the “effi-
ciency” is defined by

η(εa) ≡
∫ εa

0 σ ∗(ε)dε

σ ∗(εa)
(1b)

High speed dynamic tests were performed with a
modified SHPB testing system, in which nylon bars were
chosen to increase the impedance ratio [8]. Significant
enhancements were observed for both the initial crush-
ing stress and the average plateau stress (up to an 86%
enhancement compared to the quasi-static plateau
stress), see Fig. 2b. Corresponding enhancing mecha-
nisms are identified, where the micro-inertia effect
accounts for the appearance of the sharp initial peak,
whilst the strain-rate sensitivity of the base material
(mild steel) accounts for the significant enhancement
for the plateau stress.

3 Finite element models

3.1 Simplification of the connection between
neighboring spheres

Since the MHS materials adopted in our study were
fabricated by a sintering process whilst a minor pre-
compression was applied, the randomly packed hol-
low spheres were connected in small flattened contact
regions instead of points. Figure 3a shows a typical cross-
section of the specimen where the flattened regions
can be clearly seen among the neighboring spheres.
A simplified model of the connection based on this
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Fig. 2 Typical stress–strain curve of MHS material with small spheres. a Static loading and the energy absorption efficiency; b Dynamic
loading

observation is constructed as shown in Fig. 3b. The con-
nection region is a circular plate with radius of r =
R · sin θ and thickness of 2h. The main advantage of this
model is that it can be simulated with finite-strain S3R
shell elements in order to significantly reduce the com-
putation time; whereas the limitation is that the bonding
angle can not be very large in order to satisfy the geo-
metric similarity with the hollow spheres. In the present
study, the bonding angle is restricted to a range of 0◦–15◦.

3.2 Description of the representative blocks

Although the commercial finite element software serves
as a powerful tool in solving engineering problems, it
is greatly restricted by the computational ability of the
computers available. The computation time will be
extremely long if too many nodes and elements are
adopted in a model. Therefore, it is not feasible to simu-
late the whole structure of a specimen used in the exper-
iment. The basic unit of the MHS material is a hollow
sphere with uniform outer radius, hence it is straightfor-
ward to adopt the concept of regular packing of atoms
in crystal solids when constructing the finite element
models. Although the hollow spheres in a real speci-
men are randomly packed, the specimen’s behavior can
be related to a structure with regular packing, provided
the relative density of the real material is appropriately
taken into account in interpreting the computational
results.

As well known, there exist four types of regular pack-
ing in crystal solids: the simple cubic packing (SC), the
body-centered cubic packing (BCC), the face-
centered cubic packing (FCC) and the hexagonal close

Fig. 3 a Typical cross-section of the MHS specimen; b Simplifi-
cation of the connection in the present study
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Fig. 4 a Representative
block of the SC packing;
b Representative block of the
BCC packing;
c Representative block of the
FCC packing;
d Representative block of the
HCP packing

packing (HCP). By applying the appropriate bound-
ary conditions, one can choose a small representative
block to study the properties of the whole structure, see
Fig. 4a–d.

3.3 Construction of the finite element models

Finite element models of four types of regular packing
are created by using commercial code ABAQUS v.6.4.
The models are designed to evaluate the effects of the
governing physical and geometrical parameters on the
mechanical response, especially the crushing behavior,
of different packing patterns. As shown in Fig. 5a, the
deformable representative block is placed between two
rigid circular plates. The bottom one serves as the fixed
boundary whereas the top one serves as the punch, so
that only the displacement in the vertical direction (the
axis 2) is allowed. The side faces of the block are per-
pendicular to the axis 1 and the axis 3 except those in
the HCP packing, whose cross-section in the 1–3 plane
is a hexagon; while the compression is performed along
the vertical direction. The “hard contact” algorithm in
ABAQUS is adopted to describe the normal properties
of all the contacts (i.e., the contacts between the rigid
plates and the spherical shells as well as the contacts
between the spherical shell parts themselves), whereas
the tangential behavior is defined as frictionless. Peri-
odic boundary conditions are not easy to be applied by
using the available code for the representative blocks
with complex geometries, so that symmetric boundary

conditions are used for all the vertical side faces. For
example, the plane containing edge A and edge B (i.e.
the plane containing the axes 1 and 2) in Fig. 5b is a
symmetric plane perpendicular to the axis 3, hence the
displacements along the axis 3 and the rotation angles
about the axes 1 and 2 are constrained for all the nodes
at these two edges. By applying the symmetric boundary
conditions, the transverse expansion (or shrink) of the
representative block is fully constrained. This is different
from the real experiments, where the side faces remain
as free boundaries. Finally, the representative block is
automatically meshed by using the triangular S3R shell
elements, and about 5,400–6,800 nodes are used in one
hollow sphere after a mesh convergence analysis.

3.4 Geometry variation

A parametric study is performed to evaluate the effect
of the relative density on the behavior of MHS mate-
rial. It is known that the three important parameters
are the relative sphere wall thickness, the bonding angle
and the packing pattern. FCC packing is chosen as an
example to study the effects of the first two parameters.
According to the experimental data, the sphere wall
thickness is taken to be 0.049 mm. For a given bonding
angle of 5◦, h/R varies from 0.01 to 0.1; for a given rel-
ative sphere wall thickness of 0.033 (i.e., for the large
sphere specimen with R = 1.5 mm and h = 0.05 mm
used in our experiments [8]), θ varies from 0◦ to 15◦; for
the comparison among different packing patterns, these
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Fig. 5 a Construction of the
finite element model;
b Corresponding boundary
conditions

two parameters are set to be h/R = 0.033 and θ = 5◦.
Detailed geometrical parameters adopted in each case
are listed in Table 1.

3.5 Material definition

Besides the relative density, a parametric study is also
performed to examine the effect of the base material
properties. For most of the models, the material is
defined to be elastic, perfectly-plastic, with the Young’s
modulus varying from 50 GPa to 400 GPa and the yield
stress varying from 100 to 400 MPa. As mentioned in our
previous paper [8], 344 MPa is used as the yield stress of
the base material (mild steel) when comparing the finite
element simulation with the experimental data. Finally,
the Poisson’s ratio is taken as 0.3 for all the cases.

4 Results and discussions

In total more than 80 cases are programmed into
ABAQUS v.6.4 and processed on personal computers
(PIII 1 GHz, 1 G Ram). The non-linear geometric analy-
sis is enabled in ABAQUS because the compressed rep-
resentative block would undergo large deformations. A
static approach (ABAQUS Standard) is used to obtain
the elastic response and the initial yielding property,
whereas a dynamic approach (ABAQUS Explicit) with
an extremely large mass and a low speed is applied to
achieve a large strain plastic deformation. A conver-
gence study shows that an element length equal to 5%
of the sphere radius is sufficient. For consistency, the
nominal engineering strain is defined as the displace-
ment of the top rigid plate divided by the initial height of
the block, and the nominal stress is defined as the reac-
tion force (in the static approach) or the inertia force
(−Mplate · a in the dynamic approach) of the top rigid
plate divided by the cross-sectional area of the block.
After the FE computation, the stress–strain curves are

smoothed by a moving average method to reduce the
disturbance of the contact noise.

4.1 Deformation process

As an example, the simulated deformation of the FCC
packing are plotted at different stages of compression
in Fig. 6. The color contours show the equivalent plas-
tic strain at integration points, where the blue regions
undergo elastic deformation and the red regions yield
the largest plastic deformation. As the top rigid plate
goes down, four basic parts of the FCC packing deform
simultaneously. The plastic regions first occur at the
four side connections and then develop with the contact
regions among different parts. The strain field within
the representative block is highly non-uniform, where
the plastic deformation merely concentrates on the con-
tact regions while most of the other regions experience
elastic deformation only. It is also noted that there is
no plastic deformation at the top (or bottom) corners in
each basic part (such as region A or region B in Fig. 6)
before the densification, so those regions move as rigid
shell segments, which form a basic assumption adopted
in our theoretical modeling [10].

4.2 Construction of the entire stress–strain curves

In the static approach, the Riks method in ABAQUS is
used to simulate the early response of the representative
block. The advantage of this method is that its compu-
tation efficiency is high whilst a displacement control is
implemented, so the reaction force of the top rigid plate
is equal to the total force acting on the block. However,
the automatic computing displacement step, especially
in large strains, will become so small that the simulation
will halt. An equivalent dynamic approach is adopted
via the ABAQUS Explicit in order to obtain the plastic
behavior in large strains. The inertia effect caused by
the dynamic loading is minimized by using a very low
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Table 1 Geometric
properties of various packing
patterns

Model h/R θ(◦) Relative density, ρ∗

FCC

0.033 (large sphere)

0 0.0703
5 0.0710
10 0.0734
15 0.0771

0.054 (small sphere)
5

0.1158
0.01 0.0222
0.1 0.2030

HCP
0.033 5

0.0710
BCC 0.0653
SC 0.0502
Sphere wall thickness h = 0.049 mm

loading speed, and an extremely large mass is assigned
to the top rigid plate to keep the loading speed almost
constant. Although there is no convergence problem in
the explicit approach, the contact noise at the very begin-
ning is so large that the early response is not reliable. The
entire stress–strain curves are constructed by the combi-
nation of the two approaches, as shown in Fig. 7, where
the curves coincide in the intersection region. In the
subsequent analysis, the results from the Riks method
are used as the early response (ε ≤ 10%), and the results
from the explicit method are used as the later response
(ε > 10%).

4.3 Effects of the parameters of the base material

The FCC model with h/R = 0.033 and θ = 5◦ is cho-
sen to evaluate the effects of the parameters of the base
material.

4.3.1 Young’s modulus

The Young’s modulus E of the base material is varied in
the region 50–400 GPa to study its effect, whilst the yield
stress is fixed as Y = 200 MPa. The results are listed in
Table 2 and plotted in Fig. 8. On one hand, the elastic
modulus of the representative block is proportional to
that of the base material; on the other hand, the output
parameters listed in Table 2 are quite close to each other,
indicating that the Young’s modulus has little effect on
the MHS’ plastic behavior in large strains.

4.3.2 Yield stress

The yield stress Y of the base material is varied in
the region 100–400 MPa to study its effect, whilst the
Young’s modulus is fixed as E = 200 GPa. The results
are listed in Table 3 and plotted in Fig. 9a and b. It
is noted that the elastic modulus of the representative

Table 2 Effect of the Young’s modulus of the base material

E (GPa) E∗ (GPa) εD(%) σ ∗
pl (MPa)

50 0.54 67.7 3.76
100 1.07 67.9 3.78
200 2.15 67.9 3.78
400 4.30 67.8 3.79

FCC packing with h/R = 0.033 and θ = 5◦, Y = 200 MPa

Table 3 Effect of the yield stress of the base material

Y (MPa) E∗ (GPa) σ ∗
Y (MPa) εY /(%) εD/(%) σ ∗

pl (MPa)

100 2.15 1.50 0.13 66.0 1.96
200 2.15 2.97 0.26 67.9 3.78
400 2.15 5.72 0.44 68.5 7.29

FCC packing with h/R = 0.033 and θ = 5◦, E = 200 GPa

block is not affected by the yield stress, whereas both the
initial yield stress and the plateau stress of the represen-
tative block are proportional to the yield stress of the
base material (Fig. 9a). The shapes of the stress–strain
curves are similar to each other except the magnitudes
of the stresses (Fig. 9b). All the above results are con-
sistent with the plastic theory of thin-walled structures,
where Y plays a dominant role in the plastic behavior.

4.3.3 Strain-rate sensitivity

Significant enhancements of the stress–strain curves
were observed in dynamic tests compared with that of
the quasi-static tests (Fig. 2b). A rough theoretical anal-
ysis shows that the strain-rate sensitivity of the base
material is the key factor. In the finite element simula-
tions, the Cowper–Symonds relationship [11] is adopted,
where the material constants are taken as D = 40 s−1

and q = 5 for mild steel, and the results are plotted
in Fig. 10. For a loading speed of 20 m/s, the plateau
stress shows a 67% enhancement, comparable to 76%
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Fig. 6 Deformation of the FCC packing at different stages. a ε = 9.5%; b ε = 18.9%

in the experiment. Although a certain difference exists
between these two values, the finite element simulation
does demonstrate that the strain-rate sensitivity of the
base material is responsible for the significant enhance-
ment of the dynamic stress–strain curves of the MHS
material.

4.4 Effects of the geometrical parameters

An elastic, perfectly-plastic relationship with E=200GPa
and Y = 200 MPa is chosen to represent the base
material when evaluating the effects of the geometrical
parameters.
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Fig. 7 Construction of an entire stress–strain curve

Fig. 8 Effect of the Young’s modulus of the base material; FCC
packing with h/R = 0.033 and θ = 5◦, Y = 200 MPa

4.4.1 Bonding angle

The FCC model with h/R = 0.033 is employed in the
study of the effect of the bonding angle θ , which var-
ies from 0◦ to 15◦. The results are listed in Table 4 and
plotted in Fig. 11a and b. In the early response, both the
elastic modulus and the initial yield stress of the rep-
resentative block increase with the increasing bonding
angle (Fig. 11a). This agrees well with the experimental
observation on ping pang balls [13]. In the later response,
the model with θ = 5◦ yields the lowest plateau stress
and the model with θ = 15◦ produces the highest one
among the simulated cases. In fact, it is known from
Table 1 that the relative density in the case of θ = 5◦ is
larger than that in the case of θ = 0◦. However, the lat-
ter has a larger plateau stress, indicating that besides the
relative density, the internal structure (e.g., the bond-
ing between spheres) also affects the plastic behavior.
It is not sufficient to study foam materials only from
the material point of view, a structural approach is also
indispensable.

4.4.2 Relative sphere wall thickness

The FCC model with θ = 5◦ is employed in the study
of the effect of the relative sphere wall thickness h/R,
which varies from 0.01 to 0.1. The results are listed in

Table 4 Effect of the bonding angle

θ/(◦) E∗ (GPa) σ ∗
Y (MPa) εY /(%) εD/(%) σ ∗

pl/(MPa)

0 1.72 1.48 0.11 69.4 4.0
5 2.15 2.97 0.26 67.9 3.78
10 2.73 4.35 0.29 67.9 4.18
15 3.32 4.85 0.23 66.9 4.66

FCC packing with h/R = 0.033; E = 200 GPa, Y = 200 MPa

Table 5 Effect of the relative sphere wall thickness

h/R E∗
FCC (GPa) σ ∗

Y (MPa) εY /(%) εD/(%) σ ∗
pl (MPa)

0.01 0.59 0.69 0.18 71.5 0.64
0.033 2.15 2.97 0.26 67.9 3.78
0.054 3.87 5.58 0.29 67.2 8.59
0.1 8.03 12.3 0.36 72.1 22.2

FCC packing with θ = 5◦; E = 200 GPa, Y = 200 MPa

Table 5 and plotted in Fig. 12a and b. The elastic mod-
ulus, the initial yield stress and the plateau stress all
increase with the increasing relative sphere wall thick-
ness. This is because both the stiffness and the deforma-
tion energy of the sphere increase with the increase of
h/R. By a numerical fitting of the finite element results,
the above three parameters are well described by the
following empirical functions:

E∗

E
= 0.53

( h
R

)1.13
, (2a)

σ ∗
Y

Y
= 1.08

( h
R

)1.25
, (2b)

σ ∗
pl

Y
= 3.82

( h
R

)1.54
, (2c)

for an FCC packing with 0.01 ≤ h/R ≤ 0.1 and θ = 5◦.
In Eqs. (2a)–(2c), E∗, σ ∗

Y and σ ∗
pl denote the Young’s

modulus, the initial yield stress and the plateau stress of
the FCC packed MHS material, respectively.

Equation (2a) is plotted in Fig. 13a. It is seen that
the variation of the elastic modulus is comparable to
the corresponding predictions given in Ref.[7]. Equa-
tions (2b) and (2c) are plotted in Fig. 13b. It is seen that
the yield strength and the plateau stress resemble the
tendency given by the experimental results. The present
finite element approach for the stress–strain response of
MHS material gives a reliable estimate for the material
strength in relatively large strains.

4.4.3 Packing pattern

In the study of the effect of the packing pattern, the
two governing geometric parameters are fixed as
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Fig. 9 Effect of the yield stress of the base material; FCC packing with h/R = 0.033 and θ = 5◦, Eraw = 200 GPa: a The initial yield
and plateau stresses; b Stress–strain curves

Fig. 10 Effect of the strain-rate sensitivity of the base material;
FCC packing with h/R = 0.033 and θ = 5◦; E = 200 GPa, Y =
200 MPa

Table 6 Effect of the packing pattern

Packing pattern E∗ (GPa) σ ∗
Y (MPa) εY /(%) εD/(%) σ ∗

pl (MPa)

SC 0.25 0.36 0.28 69.2 2.41
BCC 1.74 2.39 0.23 71.3 3.12
FCC 2.15 2.97 0.26 67.9 3.78
HCP 1.74 2.20 0.21 66.3 4.05

h/R = 0.033, θ = 5◦; E = 200 GPa, Y = 200 MPa

h/R = 0.033 and θ = 5◦. The results are listed in Table 6
and plotted in Fig. 14a and b. Although the FCC packing
and the HCP packing both refer to the same structure
loaded in different directions, the elastic modulus, the
yield stress and the plateau stress are all different, indi-
cating the anisotropy property of the structure. The HCP
packing gives the highest plateau stress (7% higher than
that of the FCC packing), showing that it is the best
one for energy absorption. The energy absorbing capac-
ities of the BCC packing and the SC packing are not as
good as those of the other two packing patterns because
the formers have relatively looser structures. In fact, the
stress–strain curve of the SC packing is more or less
like that of a single sphere under uniaxial compression
(refer to [12]).

4.4.4 Specific energy absorption

It is noted from Table 6 that the plateau stress of the
HCP packing is 68% higher than that of the SC pack-
ing. Apparently, it is because more material included in
the HCP representative block contributes to the energy
absorption. To further evaluate the effects of the struc-
tural parameters on the energy absorbing capacities of
the MHS material, we can define a Specific Energy
Absorption (SEA) characteristic as

SEA =
∫ εD
εY

σ ∗(ε)dε

ρ0 · ρRD
, (3)

where ρRD is the relative density of the packing pattern.
Figure 15a shows the variation of SEA versus h/R for
the FCC packing with θ = 5◦, where almost a linear
relationship is found. The variation of SEA for differ-
ent packing patterns with h/R = 0.033 and θ = 5◦ is
presented in Fig. 15b, where apparently the SEA of the
HCP packing manifest only 14% higher SEA than that
of the SC packing. It is evident, therefore, that when
the energy absorbed by a unit mass is considered, the
relative sphere wall thickness must be a more important
parameter than the packing pattern.

4.5 Strengths and limitations of the present studies

Different from the previous finite element studies con-
ducted by Sanders et al. [3,4] and Gasser et al. [5–7],
the present study has successfully simulated the total
collapse behaviors of the hollow sphere structures with
regular packing patterns. Adjusted by the relative den-
sity based on the open-celled foam theory, the pre-
dicted post-yield behaviors, especially the plateau stress,
agree well with the experimental measurements. The
proposed models have greatly simplified the geometry
of the connections and make the simulations possible to
be efficiently formulated by shell elements. The typical
computation time is between 1 and 4 h in a personal
computer of PIII 1 GHz and 1 G Ram. However, the
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Fig. 11 Effect of the bonding angle; FCC packing with h/R = 0.033; E = 200 GPa and Y = 200 MPa: a Early response; b Large plastic
response

Fig. 12 Effect of the relative sphere wall thickness; FCC packing with θ = 5◦; E = 200 GPa and Y = 200 MPa: a Early response;
b Large plastic response

Fig. 13 a Elastic modulus for FCC packing; b Yield strength and plateau stress for FCC packing

Fig. 14 Effect of the packing pattern; h/R = 0.033, θ = 5◦; E = 200 GPa and Y = 200 MPa: a Early response; b Large plastic response
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Fig. 15 a Variation of SEA versus h/R for the FCC packing with θ = 5◦; b Variation of SEA for different packing patterns with
h/R = 0.033 and θ = 5◦

limitation also comes from the simplification of the con-
nection, which is only valid for thin-walled spheres with
small connect necks. Moreover, the symmetric bound-
ary conditions should be replaced by the periodic ones
so that the effect of the nominal Poisson’s ratio can be
evaluated.

5 Summary and concluding remarks

On the basis of the experimental observation of the
MHS specimens under uniaxial compression, a simpli-
fied model is proposed to describe the connection
between the neighboring spheres. It greatly reduces the
geometric complexity of the structure, so that shell ele-
ments can be used to increase the computation efficiency.

By adopting the above idealization, finite element
models of the SC packing, BCC packing, FCC pack-
ing and HCP packing are constructed, and their behav-
iors under uniaxial compression are successfully sim-
ulated with the commercial code ABAQUS v.6.4. The
entire stress–strain curves are constructed by a combina-
tion of the static approach and the equivalent dynamic
approach. The effects of all the governing input param-
eters are evaluated, whilst a special attention is paid to
the plateau stress as it is directly related to the energy
absorbing capacity of the material.

As for the geometrical parameters, a larger bonding
angle results in a larger initial yield stress; and the pla-
teau stress is in a power law relationship with the relative
sphere wall thickness. The FCC packing and the HCP
packing refer to the same structure loaded in differ-
ent directions, but the predicted elastic modulus, initial
yield stress and the plateau stress are all different, dem-
onstrating the anisotropy property of the close-packed
structure. Although the HCP packing is the best for
energy absorption because of its highest plateau stress,
the differences between various regular packaging con-
figurations in the Specific Energy Absorption defined by
Eq. (3) are in fact not significant (Fig. 15b), implying that

the relative wall thickness h/R plays a more important
role than the packaging pattern (Fig. 15a).

Finally, the predicted plateau stresses agree well with
the experimental data for both types of specimens. With
the high efficiency of the computation, the finite element
simulation is proven to be a powerful tool in evaluating
the mechanical behavior of the MHS material in large
deformations.

References

1. Waag, U., Stephani, G., Bretschneider, F., Venghaus, H.:
Mechanical and acoustical properties of highly porous mate-
rials based on metal hollow spheres. In: Proceedings of the
2002 World Congress on Powder Metallurgy & Particulate
Materials. Orlando, USA, Part 7 (2002)

2. Lim, T.J., Smith, B., McDowell, D.L.: Behavior of a random
hollow sphere metal foam. Acta Materialia 50, 2867–2879
(2002)

3. Sanders, W.S., Gibson, L.J.: Mechanics of hollow sphere
foams. Mat. Sci. Eng. A 347, 70–85 (2003)

4. Sanders, W.S., Gibson, L.J.: Mechanics of BCC and FCC
hollow-sphere foams. Mat. Sci. Eng. A 352, 150–161 (2003)

5. Gasser, S., Paun, F., Cayzeele, A., Bréchet, Y.: Uniaxial ten-
sile elastic properties of a regular stacking of brazed hollow
spheres. Scripta Materialia 48, 1617–1623 (2003)

6. Gasser, S., Paun, F., Riffard, L., Bréchet, Y.: Micro-
plastic yield condition for a periodic stacking of hollow
spheres. Scripta Materialia 50, 401–405 (2004)

7. Gasser, S., Paun, F., Bréchet, Y.: Finite elements computa-
tion for the elastic properties of a regular stacking of hollow
spheres. Mat. Sci. Eng. A 379, 240–244 (2004)

8. Gao, Z.Y., Yu, T.X., Zhao, H.: Mechanical behavior of metal-
lic hollow sphere (MHS) materials: an experimental study.
ASCE J. Aerospace (2007, in press)

9. Zhao, H., Elnasri, I., Abdennadher, S.: An experimental
study on the behavior under impact loading of metallic cel-
lular materials. Int. J. Mech. Sci. 47, 757–774 (2004)

10. Karagiozova, D., Yu, T.X., Gao, Z.Y.: Modeling of MHS cel-
lular solid in large strains. Int. J. Mech. Sci. 48, 1273–1286
(2006)

11. Stronge, W.J., Yu, T.X.: Dynamic models for structural plas-
ticity. Springer, London (1993)

12. Ruan, H.H., Gao Z.Y., Yu, T.X.: Crushing of thin-walled
spheres and sphere arrays. Int. J. Mech. Sci. 48, 117–133
(2006)


	Finite element simulations on the mechanical propertiesof MHS materials
	Abstract 
	Introduction
	Experimental results of two types of MHS materials
	Finite element models
	Simplification of the connection between neighboring spheres
	Description of the representative blocks
	Construction of the finite element models
	Geometry variation
	Material definition
	Results and discussions
	Deformation process
	Construction of the entire stress--strain curves
	Effects of the parameters of the base material
	Young's modulus
	Yield stress
	Strain-rate sensitivity
	Effects of the geometrical parameters
	Bonding angle
	Relative sphere wall thickness
	Packing pattern
	Specific energy absorption
	Strengths and limitations of the present studies
	Summary and concluding remarks

