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Abstract In order to understand the nature of
surface patterns on silicon melts in industrial Czochral-
ski furnaces, we conducted a series of unsteady three-
dimensional numerical simulations of thermocapillary
convections in thin silicon melt pools in an annular con-
tainer. The pool is heated from the outer cylindrical wall
and cooled at the inner wall. Bottom and top surfaces
are adiabatic. The results show that the flow is steady
and axisymmetric at small temperature difference in
the radial direction. When the temperature difference
exceeds a certain threshold value, hydrothermal waves
appear and bifurcation occurs. In this case, the flow is un-
steady and there are two possible groups of hydrother-
mal waves with different number of waves, which are
characterized by spoke patterns traveling in the clock-
wise and counter-clockwise directions. Details of the
flow and temperature disturbances are discussed and
number of waves and traveling velocity of the hydro-
thermal wave are determined.
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1 Introduction

In the past few decades, thermocapillary convection has
received much attention with respect to both funda-
mental and industrial aspects, especially in micrograv-
ity-related fluid science and in semiconductor single-
crystal growth from melt. In the terrestrial environ-
ment, buoyancy and thermocapillary forces are coupled
to cause natural convections. However, under micro-
gravity or in shallow fluid layers on the earth, the ther-
mocapillary force becomes dominant. Smith and Davis
[1] performed a linear stability analysis of a thin and
infinitely extended fluid layer with a free upper surface
subjected to a constant horizontal temperature gradi-
ent. They found two types of three-dimensional (3-D)
instabilities, i.e. stationary longitudinal rolls and oblique
hydrothermal waves depending on the Prandtl number
(Pr) and the basic flow pattern (with or without a return
flow), determined the critical Marangoni number. Sub-
sequently, Garnier and Normand [2] performed a linear
stability analysis of radial thermocapillary flow in an
extended cylindrical geometry for liquids with Pr = 10
and predicted that the instability appeared first near the
inner cylinder.

Many experiments of thermocapillary convection in
a shallow liquid layer subjected to a horizontal temper-
ature gradient were performed for rectangular geome-
tries [3–12], annular geometry [13–16] and Czochralski
configuration [17,18] with cold liquids. In these experi-
ments, high-Pr fluids, such as silicone oils, molten salts
and acetone, were used, and authors of these experi-
ments reported various types of flow instabilities.
However, few experimental reports are known on ther-
mocapillary convection in low-Pr fluids, such as liquid
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metals. Recently, Azami et al. [19] observed spoke pat-
terns on the surface of a shallow, annular pool of high-
temperature silicon melt (3 and 8 mm in depth) and
reported that thermocapillary flow might play an impor-
tant role in the incipience of 3-D convection and the
number of spokes.

Numerical simulations have facilitated the under-
standing of the characteristics of thermocapillary
convection. Ben Hadid and Roux [20,21] performed
two-dimensional (2-D) simulations of thermocapillary-
buoyancy and pure thermocapillary convection in pools
of low-Pr fluids with various aspect ratios in rectangular
geometries, and shown the existence of a multicellular
steady flow and a transition to oscillatory convection.
Villers and Platten [3] carried out both experiments
and 2-D simulations for acetone (Pr = 4), and con-
firmed the existence of a multicellular flow. Li et al. [22],
Xu and Zebib [23] performed 2-D and 3-D calculations
for fluids with moderate Pr number. They determined
the Hopf bifurcation neutral curves as a function of
capillary Reynolds number and aspect ratio. Recently,
we performed series of numerical simulations of 3-D
thermocapillary-buoyancy flows with different Pr num-
bers in different geometric configurations [24–26] and
suggested that thermocapillary flow subjected to a radial
temperature gradient would exhibit several types of 3-D
oscillations. These flow types depend on the Pr number,
liquid depth, buoyancy, geometry and temperature gra-
dients. In this paper, we present a series of unsteady
3-D numerical simulations to understand the bifurca-
tion characteristics of thermocapillary convections of sil-
icon melt in shallow annular layers subjected to a radial
temperature gradient.

2 Model formulation

2.1 Basic assumptions and governing equations

We analyze the flow of silicon melt in a shallow annular
layer of depth d = 3 mm, inner radius ri = 15 mm and
outer radius ro = 50 mm, with a free upper surface and
a solid bottom, as shown in Fig. 1. The inner and outer
cylinders are maintained at constant temperatures Tc

and Th, (Th > Tc = Tm), respectively. The horizontal
temperature gradient varies in the radial direction. The
thermocapillary force is taken into account at the top
free surface, whereas at other solid–liquid boundaries
no-slip condition is applied. Melt convection is gener-
ated by the surface tension gradient on the top surface.
The following assumptions are introduced in our model:
(1) Silicon melt is an incompressible Newtonian fluid
and the properties are constant except for the surface

Fig. 1 Configuration of the system

tension; (2) The velocity is small and the flow is laminar;
(3) The upper surface is flat and nondeformable.

With the above assumptions, the flow and heat trans-
fer equations are expressed in a nondimensional form
as follows:

∇ · V = 0, (1)
∂V
∂τ

+ V · ∇V = −∇P + ∇2V + Gr�eZ, (2)

∂�

∂τ
+ V · ∇� = 1

Pr
∇2�. (3)

The boundary conditions are: at the free surface
(Z = d/ro, Ri < R < 1, 0 ≤ θ < 2π)

∂VR

∂Z
= −Reγ

∂�

∂R
, (4a)

∂Vθ

∂Z
= −Reγ

∂�

R∂θ
, (4b)

VZ = 0, (4c)
∂�

∂Z
= 0, (4d)

at the bottom (Z = 0, Ri < R < 1, 0 ≤ θ < 2π)

VR = Vθ = VZ = 0, (5a–c)
∂�

∂Z
= 0, (5d)

at the inner cylinder (R = Ri, 0 ≤ Z ≤ d/ro, 0 ≤ θ <

2π)

VR = Vθ = VZ = 0, (6a–c)

� = �i = 0, (6d)

and at the outer cylinder (R = 1, 0 ≤ Z ≤ d/ro, 0 ≤ θ <

2π)

VR = Vθ = VZ = 0, (7a–c)

� = �o = 1. (7d)

The initial conditions are expressed as follows (at
τ = 0):

VR = Vθ = VZ = 0, (8a–c)

� = 1 − ln R/ ln Ri, (8d)
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where V is the velocity vector, P the pressure, � the
temperature, τ the time in nondimensional form. R,
Z and θ are the cylindrical coordinates. eZ is the
Z-directional unit vector. The nondimensional parame-

ters Gr = ρTg�Tr3
o

ν2 , Pr = ν

a
and Reγ = γT�Tro

µν
are the

Grashof number, the Prandtl number and the capillary
Reynolds number, respectively, where �T = Th − Tc.
ρT is the thermal expansion coefficient, ν the kinematic
viscosity, a the thermal diffusivity, µ the viscosity and
γT = −∂γ /∂T the temperature coefficient of the sur-
face tension.

The variables are nondimensionalized as

(R, Z) = (r, z)

ro
,

(VR, Vθ , VZ) = (vr, vθ , vz)

ν/ro
,

P = pr2
o

ρν2 ,

� = T − Tc

Th − Tc
,

τ = tν
r2

o
.

The temperature difference in the radial direction
is expressed in non-dimensionalized form as the
Marangoni number [24],

Ma = γTd2

µα

�T
ro − ri

.

The thermophysical properties of silicon melt at Tm =
1683 K are listed below:

Thermal conductivity, λ = 64 W m−1 K−1,
Viscosity, µ = 7.0 × 10−4 kg m−1 s−1,
Density, ρ = 2530 kg m−3,

Surface tension coefficient, γT =−7.0×10−5 N m−1 K−1,
Heat capacity, Cp = 1000 J kg−1 K−1,

Melting temperature, Tm = 1683 K.

The temperature coefficient of the surface tension is
assumed to be −7 × 10−5 N/(m K) [27,28].

2.2 Numerical method

The fundamental equations are discretized by the finite-
volume method. The modified central difference
approximation is applied to the diffusion terms while
the QUICK scheme is used for the convective terms. The
SIMPLER algorithm [29] is used to handle the pressure–
velocity coupling. In this study, nonuniform staggered
grid of 60r × 30z × 60θ is used. The validation of the

code and the grid convergence for the thermocapillary
flow simulation were checked in Refs. [24–26].

Numerical simulations were conducted on an MPU of
the Fujitsu VPP700 at the Computer Center of Kyushu
University. The time increment was chosen between
10−4 and 10−3 s. The convergence at each time step
was assumed if the maximum residual error of the con-
tinuity equation among all control volumes became less
than 10−5 s−1.

3 Results and discussion

Any radial temperature difference (�T = Th − Tc > 0)

produces a surface tension gradient on the free surface
of the melt and the Marangoni effect induces the flow
in the melt layer. In the present case, surface fluid flows
from the outer cylinder wall toward the inner cylinder
wall and the recirculation flow exists near the bottom.
If the Marangoni number Ma is small, the flow is steady
and axisymmetric. This type of flow is called as the basic
flow. However, when Ma is increased, this basic flow
becomes unstable against 3-D disturbances. The critical
condition for this flow transition is Macri = 9.15(�Tcri =
9 K), as pointed out in Ref. [24].

When Ma exceeds a certain threshold value, 3-D dis-
turbances are incubated and their amplitudes increase
with time. Finally, a 3-D oscillatory flow pattern is
formed. In order to get all possible solutions of the 3-D
oscillatory flow and save the computation time, we use
the VR, VZ and � values at Ma = 8.13 (�T = 8 K)
as the initial conditions and choose the time increment
between 10−4 and 10−3 seconds when Ma > Macri. It is
found that there are two groups of oscillatory flows and
temperature fields with an azimuthal direction symme-
try when Ma exceeds the critical value. Figure 2 shows

Fig. 2 Bifurcation diagram
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Fig. 3 Snapshots of surface temperature (left) and space-time diagram of surface temperature distribution (right) at R = 0.4 and
Ma = 21.35 (�T = 21 K). a A; b B; c Bs; d As

the propagating azimuthal velocity Vθ ,HW,R=0.4 of the
oscillatory flow as a function of Ma at R = 0.4.

The temperature fluctuation δ� is introduced to
extract the 3-D disturbances:

δ�(R, θ , Z, τ) = �(R, θ , Z, τ) − 1
2π

2π∫

0

�(R, θ , Z, τ)dθ .

(10)

In this case, many traveling curved spoke patterns
are observed on the entire surface. These correspond to
the “hydrothermal wave” instability. For example, when
Ma = 21.35(�T = 21 K), as shown in Fig. 3, there are
two possible traveling waves with the azimuthal direc-
tion symmetry. In Figs. 3a and d, six hot (dark) and six
cold (bright) spots of comparable intensity indicate the
mode (number of waves) m = 6. In this case, the hydro-
thermal waves are propagating in both the clockwise and
counterclockwise directions with the numbers of spokes
m=6. In Figs. 3b and c, the hydrothermal waves are also
propagating in both the clockwise and counterclockwise
directions but with m = 7. The angles (φ) between the
wave propagation and the radial direction, measured at
R = 0.4 (r = 20 mm), are about 75◦–80◦ and 100◦–105◦,
which is close to the angle values predicted by the linear
stability theory for infinite rectangular layer [1]. How-
ever, as seen from Fig. 3, the spokes are not straight.
Therefore, these traveling waves are taken as indication
of many parallel tilted straight lines on the space-time
diagram (STD) taken at R = 0.4.

The circumferential view of the temperature distri-
bution and the flow structure at R = 0.5 (r = 25 mm)
is shown in Fig. 4 for the case of Ma = 21.35 (�T =
21 K). In this case, the annular pool was occupied by
the hydrothermal waves propagating in the counter-
clockwise (Figs. 4a and b) and clockwise (Figs. 4c and
d) directions. The hydrothermal waves are maintained
by a coupling of temperature and velocity disturbances
as described in Refs. [1,11].

Another way to recognize the type of waves estab-
lished in the melt is to calculate a net azimuthal flow.
The net azimuthal flow is determined as an integral,

Vθ ,ave = 1
π(1 − R2

i )Zd

∫∫∫
Vθ (R, θ , Z, τ)RdZdRdθ .

(11)

The net azimuthal flow is shown in Fig. 5. It confirms
that the flow pattern is 2-D flow (Vθ ,ave = 0) when Ma
is small. After the bifurcation, the net azimuthal flow
starts to grow. One azimuthal flow is along the coun-
terclockwise direction and another along the clockwise
one, which are accordant with the velocity of hydrother-
mal wave shown in Fig. 2. And the net azimuthal flow
with small number of waves is faster than one with larger
number of waves.

Figure 6 shows the amplitude and frequency of local
surface temperature oscillations at a monitoring point P
(R = 0.4, θ = 0, Z = 0.06) and the number of waves as
functions of Ma. Obviously, the amplitude increases with
Ma while the frequency is less sensitive to Ma. These



Bifurcation of thermocapillary convection in a shallow annular pool of silicon melt 47

Fig. 4 The circumferential
view of temperature
distribution and flow structure
at τ = 0.0166 and R = 0.5 for
Ma = 21.35 (�T = 21 K).
a A; b B; c Bs; d As

Fig. 5 Net azimuthal flow, defined by Eq. (11) vs. Ma

trends are similar to the experimental results for high-
Pr fluids in the extended cylindrical vessel (cf. Fig. 3 of
Ref. [15]) and the experimental results for high-Pr fluids
in the rectangular shallow layer (cf. Fig. 10b of Ref. [11]).

4 Conclusions

A series of 3-D numerical simulations of thermocapil-
lary flows in a shallow annular pool of silicon melt was

Fig. 6 Variation of amplitude A, frequency f and number of
waves m at monitoring point P as functions of Ma
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conducted by means of the finite volume method. Sim-
ulations were conducted for a small annular melt pool
(ro = 50 mm and ri = 15 mm) with a shallow depth
d = 3.0 mm. From the simulation results, the following
conclusions were obtained.

(1) The numerical results showed two possible types
of 3-D oscillatory thermocapillary convections
with different number of waves and different trav-
eling directions in the annular pool of low-Pr
silicon melt.

(2) The bifurcation is shown in the Vθ ,HW-Ma curve.
The azimuthal velocity of the traveling hydrother-
mal wave and the number of spokes depend on
Ma.

(3) With increasing Ma, the amplitude of the sur-
face temperature fluctuation increases, but the
frequency is less sensitive to Ma.
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