# 轴对称实体迴转杂交应力元

田宗 滅
(北京中国科技大学研究全院)

**提要** 用杂交应力法导出一系列新的八节点、四边形轴对称实体迴转元.对每种元,边界 二次位移插值函数相同,内部应力场各异.对两类不同选择假定应力场的方法进行了对比研 究.以内压力作用下的厚壁筒及厚球为例,对各种应力场进行了数值比较,并选出了一种较好 的元,该元给出了远较传统的八节点轴对称假定位移元准确的应力分布.

关键词 轴对称、杂交应力法、实体迴转元、零能模式、不变性。

### 一、前 言

用杂交应力法导出的有限元,常常可以提供比一般的假定位移元更为准确的应力分 布,并对其收敛性有所改善.这里关键在于选择假定的应力场.对于选择满足平衡方程 的应力场,轴对称实体迴转元由于平衡方程以柱坐标表示,因而比平面问题的杂交应力元 困难.

四节点轴对称杂交应力实体元,卞学璜教授和 Spilker 首先作过研究<sup>11,21</sup>,应用了准确 满足平衡方程的假设应力场;以后卞教授和本文作者又用理性杂交应力元的方法,对此问 题进行了研究<sup>13,41</sup>,即应力场最初假设为自然坐标内的完整多项式,位移也是完整的多项 式,并使之对应的应变是具有和应力同阶的完整多项式,平衡方程通过附加位移作为 Lagrange 乘子被引人.这样得到的元,数值算例表明:给出了比用假定位移法,及一般杂 交应力法所得的轴对称元更为准确的应力及位移值;几何各向同性;而且对元几何形状的 歪斜不敏感.

本文目的之一是进一步研究八节点轴对称实体迴转杂交应力元.首先应用两类不同 方法导出了六种假设应力场: 其中前三种(元 A、B、C)是由假定应力、应变一一对应的 方法导出; 后三种(元 D、E、F)是将各应力分量表示为相同多项式的方法导出. 这六种 应力场,均准确满足平衡方程;不具有多余的零能模式;并且刚度矩阵具有不变性.

以内压力作用下的厚壁筒及厚球为例,在比较了元内中点的应力值、元的应力分布, 以及位移结果后,找出了其中相对较好的一种元.

本文另一目的是在满足平衡方程前提下,对以上两类方法进行比较何者为佳.目前的结果表明,用后一类方法——应力分量表示为相同的多项式——导出的元,往往给出较前者更好的应力及位移结果.

#### 本文于 1986 年 11 月 28 日收到。

-7

(2.1)

# 二、单元刚度矩阵的导出

根据 Hellinger-Reissner 变分原理,当元采用协调位移时,可得:

力

$$\pi_R = \int_{V_n} \left[ -\frac{1}{2} g^T S g + g^T (D \mu) \right] dV$$

上式中:

g: 应力

S: 材料弹性阵

#: 位移

V.: 第 n 个元的体积

**D**: 微分算子阵,借助于柱坐标(r,z)及自然坐标(ξ,η),可表为:

$$D = \frac{1}{|J|} \begin{pmatrix} \frac{\partial z}{\partial \eta} & \frac{\partial}{\partial \xi} - \frac{\partial z}{\partial \xi} & \frac{\partial}{\partial \eta} \end{pmatrix} \qquad 0 \\ \frac{|J|}{r} & 0 \\ 0 & \left( \frac{\partial r}{\partial \xi} & \frac{\partial}{\partial \eta} - \frac{\partial r}{\partial \eta} & \frac{\partial}{\partial \xi} \right) \\ \left( -\frac{\partial r}{\partial \xi} & \frac{\partial}{\partial \eta} - \frac{\partial r}{\partial \eta} & \frac{\partial}{\partial \xi} \right) & \left( \frac{\partial z}{\partial \eta} & \frac{\partial}{\partial \xi} - \frac{\partial z}{\partial \xi} & \frac{\partial}{\partial \eta} \right) \end{bmatrix}$$
(2.2)

|] 为 Jacobian.

引用表达式:

$$g = \underline{p}\beta \tag{2.3}$$

$$u = Nq \tag{2.4}$$

式中: 《 为应力参数, 《 为节点位移, 》 与 》 分别为应力与位移插值函数。 将(2.3)、(2.4)式代入(2.1)式中,并利用下列表达式:

$$B = DN \tag{2.5}$$

$$\underline{H} = \int_{V_n} \underline{P}^T \underline{S} \underline{P} dV \tag{2.6}$$

$$\mathcal{G} = \int_{V_n} \mathcal{P}^T \mathcal{B} dV \tag{2.7}$$

即得:

7

$$\pi_R = -\frac{1}{2} \beta^T \underline{H} \beta + \beta^T \underline{G} q \qquad (2.8)$$

此式经过变分,即得单元刚度矩阵<sup>59</sup>:

$$\underline{k} = \underline{G}^T \underline{H}^{-1} \underline{G} \tag{2.9}$$

实际当应力满足齐次平衡方程时, #R 已退化为修正的余能原理:

$$-\pi_{mc} = \int_{V_n} -\frac{1}{2} g^T \underline{S} g dV + \int_{\partial V_n} \underline{T}^T \underline{u} dS \qquad (2.10)$$

这里仍用 素,是由于用式(2.7)计算阵 € 方便.

# 三、轴对称实体迴转元的应力场

对于具有一般四边形的轴对称实体元(图1),本文共导出表1中所列举的六种杂交



图1 实体迴转元横截面形状



| 假定应力场 | β数 | 消去的应力参数或彼此的关系                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A     | 15 | $\beta_{16}, \beta_{17}, \beta_{19}, \beta_{6}, \beta_{23}, \beta_{20}, \beta_{28}, \beta_{29}, \beta_{21}, \beta_{30}, \beta_{27}$ $\beta_{22} = \beta_{18}, \beta_{24} = -\beta_{11}, \beta_{23} = -\frac{1}{2}\beta_{13}, \beta_{26} = -\frac{1}{3}\beta_{13}$                                                                                                                                                                                                                                  |
| В     | 16 | $\beta_{17}, \beta_{19}, \beta_{6}, \beta_{13}, \beta_{20}, \beta_{29}, \beta_{21}, \beta_{27}, \beta_{22} = \beta_{18}, \beta_{24} = -\beta_{11}, \beta_{28} = \beta_{16}, \beta_{19} = -3\beta_{26}, \beta_{25} = -\frac{\beta_{13}}{2}, \beta_{30} = -2\beta_{28}$                                                                                                                                                                                                                              |
| с     | 17 | $\beta_{19}, \beta_{6}, \beta_{13}, \beta_{29}, \beta_{21}, \beta_{27}, \beta_{22} = \beta_{18}, \beta_{20} = -3\beta_{17}$<br>$\beta_{28} = \beta_{16}, \beta_{24} = -\beta_{11}, \beta_{15} = -3\beta_{26}, \beta_{25} = -\frac{1}{2}\beta_{13}, \beta_{30} = -2\beta_{28}$                                                                                                                                                                                                                      |
| D     | 17 | $\beta_{17}, \beta_{19}, \beta_{23}, \beta_{20}, \beta_{29}, \beta_{21}, \beta_{27}, \beta_{25} = -\frac{1}{2}\beta_{13}, \beta_{26} = -\frac{\beta_{19}}{3}$ $\beta_{12} = \beta_{18}, \beta_{24} = -\beta_{11}, \beta_{28} = \beta_{18} - \frac{1}{2}\beta_{6}, \beta_{30} = \beta_{6} - 2\beta_{16}$                                                                                                                                                                                            |
| E     | 21 | $\beta_{22} = \beta_{18}, \ \beta_{23} = 2\beta_{19}, \ \beta_{24} = -\beta_{11}, \ \beta_{28} = \beta_{16} - \frac{1}{2} \ \beta_{6}$ $\beta_{29} = 3\beta_{17} - \beta_{20}, \ \beta_{30} = \beta_{6} - 2\beta_{16}, \ \beta_{29} = -\frac{1}{2} \ \beta_{139}$ $\beta_{26} = -\frac{\beta_{19}}{3}, \beta_{27} = \beta_{20} - 3\beta_{17}$                                                                                                                                                      |
| F     | 16 | $\beta_{6} = 2(\beta_{8} + \beta_{16}), \beta_{22} = \beta_{18}, \beta_{23} = 2\beta_{19}, \beta_{10} = -\beta_{2},$<br>$\beta_{24} = -\beta_{11} \beta_{14} = -(3\beta_{16} + 2\beta_{8}), \beta_{28} = -\beta_{8}, \beta_{15} = -3\beta_{17},$<br>$\beta_{29} = 3\beta_{17} - \beta_{20} \beta_{21} = -\frac{1}{2} (5\beta_{17} + \beta_{20} + 2\beta_{22}), \beta_{30} = 2\beta_{8},$<br>$\beta_{29} = -\frac{1}{2} \beta_{13}, \beta_{26} = \beta_{19}, \beta_{27} = \beta_{20} - 3\beta_{17}$ |

应力元的应力场. 它们分别是由下式,

2

$$\sigma_{r} = \beta_{4} + \beta_{2} \frac{1}{r} + \beta_{5} \frac{z}{r} + \beta_{T}z + \beta_{8} \frac{z^{2}}{r} + \beta_{16}r + \beta_{17}r^{2} + \beta_{18}z^{2} + \beta_{19}rz$$

$$\sigma_{\theta} = \beta_{1} + \beta_{3}z + \beta_{6}r + \beta_{22}z^{2} + \beta_{23}rz + \beta_{20}r^{2}$$

$$\sigma_{s} = \beta_{12} + \beta_{10} \frac{1}{r} + \beta_{24} \frac{z}{r} + \beta_{13}z + \beta_{14}r + \beta_{28} \frac{z^{2}}{r} + \beta_{15}rz + \beta_{29}z^{2} + \beta_{21}r^{2}$$
(3.1)

$$\sigma_{rz} = \beta_{11} + \beta_{9} \frac{1}{r} + (\beta_{1} - \beta_{1}) \frac{z}{r} + \beta_{30} z + \beta_{25} r + \frac{1}{2} (\beta_{3} - \beta_{r}) \frac{z^{2}}{r} + \beta_{30} r^{2} + \beta_{37} r z$$

报

消去表1中所列举的应力参数得到.

例如,对于元 E 为:

$$\sigma_{r} = \beta_{4} + \beta_{2} \frac{1}{r} + \beta_{5} \frac{z}{r} + \beta_{1}z + \beta_{8} \frac{z^{2}}{r} + \beta_{1,r}r + \beta_{1,r}r^{2} + \beta_{1,8}z^{2} + \beta_{1,9}rz$$

$$\sigma_{\theta} = \beta_{1} + \beta_{3,z} + \beta_{6}r + \beta_{1,8}z^{2} + 2\beta_{1,9}rz + \beta_{2,r}r^{2}$$

$$\sigma_{z} = \beta_{1,1} + \beta_{10} \frac{1}{r} - \beta_{11} \frac{z}{r} + \beta_{1,3}z + \beta_{1,4}r + (\beta_{1,5} - \frac{1}{2}\beta_{6})\frac{z^{2}}{r}$$

$$+ \beta_{1,5}rz + (3\beta_{1,7} - \beta_{2,0})z^{2} + \beta_{2,1}r^{2}$$

$$\sigma_{rz} = \beta_{11} + \beta_{9} \frac{1}{r} + (\beta_{1} - \beta_{4})\frac{z}{r} + (\beta_{6} - 2\beta_{1,5})z - \frac{1}{2}\beta_{1,5}r$$

$$+ \frac{1}{2}(\beta_{3} - \beta_{7})\frac{z^{2}}{r} - \frac{1}{3}\beta_{1,5}r^{2} + (\beta_{2,0} - 3\beta_{1,7})rz$$

$$(3.2)$$

它包含了 21 个应力参数 β. 对八节点轴对称元,为扫除多余的零能模式,所需最少的 β 数 为 15, 即元 A 的 β 数.

这六种元分别由两类不同的出发点导出:

第一类(应力场 *A*、*B*、*C*):首先选取具有 15 个参数的三次位移场,得到相应的应变 场,再选择一个应力参数与一个应变分量相对应,从而得到最初假设的应力场.

第二类(应力场 D、E、F):开始将所有的应力分量均选择为相同的二次式,即:

$$\delta = \begin{cases} \sigma_{r} \\ \sigma_{\theta} \\ \sigma_{s} \\ \sigma_{rs} \end{cases} = \begin{bmatrix} P_{0} & 0 & 0 & 0 \\ 0 & P_{0} & 0 & 0 \\ 0 & 0 & P_{0} & 0 \\ 0 & 0 & 0 & P_{0} \end{bmatrix} \begin{cases} \beta_{1} \\ \beta_{2} \\ \vdots \\ \beta_{36} \end{cases}$$
(3.3)

这里

$$\underline{P}_{0} = \left[ 1 \quad \frac{1}{r} \quad \frac{z}{r} \quad z \quad r \quad \frac{z^{2}}{r} \quad r^{2} \quad z^{2} \quad rz \right]$$
(3.4)

由于是轴对称元,因此在假设应力场时,包括了 $\frac{1}{r}$ 、 $\frac{z}{r}$ 、 $\frac{z^2}{r}$ 等,负次幂项.

将开始假设的应力场,经调整系数及应力参数,以达到同时满星以下三方面的要求, 从而得到表1中所列举的应力场.

(A). 满足齐次平衡方程:

$$\begin{bmatrix} \frac{\partial}{\partial r} + \frac{1}{r} & -\frac{1}{r} & 0 & \frac{\partial}{\partial z} \\ 0 & 0 & \frac{\partial}{\partial z} & \frac{\partial}{\partial r} + \frac{1}{r} \end{bmatrix} \begin{bmatrix} \sigma_r \\ \sigma_\theta \\ \sigma_z \\ \sigma_z \end{bmatrix} = 0$$
(3.5)

对于第二类应力场,由于开始的 β 数且较多,有的应力场在导出时,还利用了协调方

• •

$$\nabla^2(\sigma_r + \sigma_\theta + \sigma_z) = 0 \tag{3.6}$$

再消去一些β.

(B). 不具有多余的零能模式:

为满足此要求,由所导出的诸应力场算得的阵 G,即:

$$\mathcal{G} = 2\pi \int_{-1}^{1} \int_{-1}^{1} \mathcal{B}rd\xi d\eta$$

(3.7)

应是满秩的<sup>[6]</sup>。

例如,对应力场 E,可算得;

1/3 0 0 1/3 0 0 0 0 1 1 0 Û 0 0 0 0 0  $0^{\circ}0 1/3$ 0 0 1 3 0 0 0 0 0 1/5 0 0 1 0 0 0 1/3 0 1/3 0 0 0 0 0 1 0 -1 00  $0 \quad 0 \quad -1/2$ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 5/4 0 0 0  $1 0 r_0$ 0 -1/2 0 0 0  $0 \quad 0 \quad -3/10$ 1 0 0 0 0 0 0 0 1 (3.8)  $G = 8\pi$ 0 0 0 1/5 1 0 0 0 1 0 0 0 1/3 0 1 0 -1 0 0 1 0 0 0 24r0 0 1 5 0 1 1

可见是满秩的,故元 E 不具有多余的零能模式.

(C). 具有不变性:

即单元刚度矩阵不因元作刚体运动而改变.这个条件对杂交应力元并不自动满足. 对轴对称元,刚体运动只是沿 z 轴的移动 zr (图 1).如以 z 表示局部坐标,则:

$$z = \bar{z} + z, \tag{3.9}$$

定义一组新的应力参数 $\bar{B}$ ,使其与已有参数B的关系为:

$$\beta = \underline{L}\bar{\beta} \tag{3.10}$$

当阵 L 满足以下关系时:

$$\overline{P}(r,\overline{z})\underline{L} = P(r,z)$$
(3.11)

则单元刚度矩阵  $\underline{e} = \underline{z}_T$  无关,即具有不变性<sup>121</sup>.上式中  $\underline{P}(r, \underline{z})$  及  $\underline{P}(r, \underline{z})$  分别代表 将  $\underline{z} = \overline{z}$  代人方程(2.3)时,所得到的二个阵.

以上导出的诸应力场均满足不变性要求.

## 四、数值结果

#### 1.厚壁筒承受内压力

2

无限长厚壁筒承受均匀内压力,沿径向取出一条,分别用粗网格1(二个元,图2)及



| 表 2 | 应力  | σ, | 及 | $\sigma_{	heta}$ | 沿径向  | r   | 误差百分比         |
|-----|-----|----|---|------------------|------|-----|---------------|
|     | (厚壁 | 笥承 | 受 | 内压               | 力,网格 | . I | <b>,1</b> ×2) |

|    | Elemen   | .t        | A                | В      | с      | D     | F     | E     | Disp.  |
|----|----------|-----------|------------------|--------|--------|-------|-------|-------|--------|
|    | No. of f | 9's       | 15               | 16     | 17     | 17    | 16    | 21    |        |
|    | Error    | r = 5.528 | -4.05            | - 4.21 | -4.47  | -0.74 | -0.05 | -0.22 | 0.10   |
|    | %        | 6.250     | -6.99            | -7.33  | -6.51  | -0.55 | -0.43 | -0.79 | -11.71 |
| σ. |          | 6.972     | - 5.72           | -6.00  | -6.25  | -0.13 | -0.07 | -0.80 | 0.11   |
| •, |          | 8.028     | - 4 . <b>4</b> 2 | - 4.59 | -6.25  | -0.61 | -0.07 | -0.48 | 0.10   |
|    |          | 8.750     | -9.43            | -9.88  | - 8.45 | -0.72 | -1.94 | -1.15 | 15.35  |
|    |          | 9.472     | -14.07           | -14.76 | -21.56 | 0.01  | 0.27  | 0.05  | 0.13   |
|    | Error    | r = 5.528 | -14.44           | -14.14 | -13.59 | 0.13  | -0.34 | -0.33 | 0.29   |
|    | %        | 6.250     | -2.67            | 2.67   | 2.97   | 3.01  | -0.00 | -0.14 | -3.31  |
| σ. |          | 6.972     | 19.55            | 19.55  | 18.71  | -0.07 | -0.38 | -0.45 | -0.35  |
| •0 |          | 8.028     | -8.10            | -8.10  | 8.83   | 0.05  | 0.10  | 0.08  | 0.04   |
|    |          | 8.750     | 1.68             | 1.68   | -1.64  | 1.20  | 0.10  | -0.09 | -0.94  |
|    |          | 9.472     | 10.89            | 10.89  | 11.76  | 0.00  | -0.12 | -0.15 | -0.16  |

细网格 II (三个元), 对表 1 所列的六种元进行了计算.

(A). 网格 1(1×2):

- 7

计算所得各元沿径向各点的径向应力 σ<sub>θ</sub>、环向应力 σ<sub>θ</sub>、与准确解相比较的误差百分 比,列于表 2 内. 元 *E*、*C* 及位移元的 σ<sub>ρ</sub> 及 σ<sub>θ</sub> 误差沿径向分布如图 3A、3B 所示.沿径 向各节点的径向位移 *u*,与准确解相比的误差百分比,在表 4 上部列出.

可以看出:对于应力 σ, 元 D、E、F 给出的结果远较其它元准确.对元内各点(不. 仅是元的中点),其最大误差绝对值,以上三种元均小于 2%;位移元为 15.4%;元 C 误差 最大,高达 21.6%.如考虑元的边界点在内,则如图 3*A* 所示,位移元的误差最大,增至. 38.4%;元 C 的误差变化比较平缓;元 E 的误差波动最小.

应力 σ<sub>θ</sub>,其最大误差绝对值仍然元 E、F 最大,元内各点均小于 0.5%;元D及位移 元次之,介于 3~3.5%;元 A、B、C 误差均相当大,高峰值接近 20%。如同时考虑边界 点,则位移元及元 C 的误差均有所增加,元 C 的结果仍最不好(图 3B)。

对于位移 u,,由表 4 可见: 各种元的误差都不大。相比较位移元、元 D、E、F 略 好





图 3 B 厚壁同承受内压刀----(网络 1, 1 × 2, 应力 σ<sub>θ</sub> 沿径向变化 ----杂交应力元 E ----杂交应力元 C ----假定位移元

表 3 应力 σ,及 σ。沿径向 r 误差百分比 (厚壁筒承受内压力,网格 II×3)

|            | Elem  | ent       | A              | В      | С      | D     | F     | E     | Disp.  |
|------------|-------|-----------|----------------|--------|--------|-------|-------|-------|--------|
| No. of β's |       | 15        | 16             | 17     | 16     | 16    | 21    |       |        |
|            | Error | r = 5.352 | -1.97          | -1.97  | -2.07  | -0.26 | -0.02 | -0.11 | 0.03   |
|            | %     | 5.833     | -3.86          | -3.35  | -3.32  | -0.20 | -0.11 | -0.26 | 5.47   |
|            |       | 6.314     | -2.44          | -2.53  | -2.48  | 0.04  | -0.03 | -0.23 | 0.02   |
|            |       | 7.019     | -0.86          | -1.90  | -2.62  | -0.19 | -0.03 | -0.06 | 0.02   |
| ø,         |       | 7.500     | -3.08          | -3.15  | -3.44  | -0.17 | -0.27 | 0.22  | - 4.95 |
|            |       | 7.981     | -2.54          | -2.63  | -3.77  | 0.01  | -0.04 | -0.11 | 0.02   |
|            |       | 8.686     | -2.54          | -2.62  | -3.14  | -0.24 | -0.01 | -0.17 | 0.03   |
|            |       | 9.167     | <b>- 5.</b> 51 | -5.71  | -5.89  | -0.31 | -0.53 | -0.43 | -9.09  |
|            |       | 9.648     | -8.33          | -8.63  | -10.60 | -0.04 | -0.06 | -0.19 | 0.03   |
|            | Error | r = 5.352 | -11.14         | -11.14 | -10.82 | 0.04  | 0.17  | 0.11  | 0.12   |
|            | %     | 5.833     | 1.32           | 1.32   | 1.46   | 1.55  | 0.02  | -0.05 | -1.17  |
|            |       | 6.314     | 13.76          | 13.76  | 13.61  | -0.03 | -0.14 | -0.17 | -0.13  |
|            |       | 7.019     | -7.48          | -7.48  | -7.61  | 0.02  | 0.04  | 0.04  | 0.04   |
| Ø.,        |       | 7.500     | 0.92           | 0.92   | 0.93   | 0.80  | 0.02  | -0.04 | -0.61  |
|            |       | 7.981     | 9.08           | 9.08   | 9.27   | -0.01 | -0.07 | -0.07 | -0.06  |
|            |       | 8.686     | 5.14           | -5.18  | -5.22  | -0.01 | -0.02 | 0.01  | 0.01   |
|            | 1     | 9.167     | 0.73           | 0.73   | 0.75   | -0.46 | 0.00  | 0.54  | -0.35  |
|            |       | 9.648     | 6.35           | 6.35   | 6.52   | 0.00  | -0.03 | -0.04 | -0.04  |

于元 A、B、C,前四种元最大误差绝对值均小于 0.4%;后三种元介于 2.5~3.5%。

报

|     |        |            |      | M    | esh I  |       |       |       |              |
|-----|--------|------------|------|------|--------|-------|-------|-------|--------------|
|     | Elemen | nt         |      | В    | с      | D     | F     | E     | Disp.        |
|     | No. of | No. of β's |      | 16   | 17     | 17    | 16    | 21    |              |
|     | Error  | r = 5.000  | 1.44 | 1.18 | -0.26  | -0.39 | -0.26 | -0.26 | -0.13        |
|     | 96     | 6.250      | 2.50 | 2.65 | 3.42   | 0.15  | 0.00  | 0.00  | 0.00         |
| H,  |        | 7.500      | 1.41 | 1.24 | 0.18   | 0.00  | 0.18  | 0.18  | 0.00         |
|     |        | 8,750      | 1.54 | 1.74 | 1.93   | 0.00  | 0.00  | -0.19 | -0.19        |
|     | 17.77  | 19.000     | 1.24 | 1.24 | 0.62   | 0.00  | 0.00  | 0.21  | 0.00         |
|     |        |            |      | M    | esh 11 |       |       |       |              |
|     | Error  | r = 5.000  | 0.66 | 0.52 | -0.13  | -0.13 | -0.13 | -0.13 | 0.00         |
|     | %      | 5.833      | 1.19 | 1.33 | 1.78   | 0.15  | 0.00  | 0.00  | 0.00         |
|     |        | 6.667      | 0.65 | 0.65 | 0.0    | 0.00  | 0.16  | 0.00  | 0.00         |
| .u, |        | 7.500      | 0.88 | 1.06 | 1.24   | 0.00  | 0.00  | 0.00  | 0.00         |
| -   |        | 8.333      | 0.56 | 0.38 | 0.19   | -0.19 | -0.19 | 0.00  | -0.19        |
|     |        | 9.167      | 0.79 | 0.79 | 0.99   | 0.00  | 0.00  | 0.00  | 0.00         |
|     |        | 10.000     | 0.62 | 0.62 | 0.41   | 0.00  | 0.00  | 0.00  | 0.0 <b>0</b> |

表4 位移 u, 沿径向 r 误差百分比 (厚壁筒承受内压力,网格 I 及网格 II)

(B). 网格 II (1 × 3):

算得各元应力 σ, 及 σ<sub>θ</sub> 的误差如表 3 所示. 沿径向各点位移 u, 的误差列于表 4 下部:



2

可以看出:对于应力σ,考虑所有 元内点及边界点在内,元 D、E、F 给出 的结果仍最好,其最大误差绝对值均小 于 0.6%;其余的元 A、B、C中,C为 好;位移元最差;元内至 9.1%,边界处高 至 15%;而元C较平稳.

对于环向应力  $\sigma_{\theta}$ ,如网格 *I* 的结果 一样,元 *E*、*F* 的精度最好;元 *D* 及位移 元次之; *A*、*B*、*C* 误差均相当大.

对径向位移 u,,由表 4 可见: 当网 格由二个元加至三个元时,元 D、E、 F 及位移元的最大误差绝对值均小于 0.2%;元 A、B、C 也介于 1~2%,都十 分接近准确解.

2. 厚球承受内压力

具有内半径 5a 及外半径 20a 的厚

图4 厚球承受内压力有限元网格(网格II,6×5) 球,承受均布内压力. 分别用粗网格I (半球分成9个元),及细网格II(图4,半球分成30个元)进行计算.

|            | Element  |           | A       | B      | c      | D     | F     | E     | Disp.   |
|------------|----------|-----------|---------|--------|--------|-------|-------|-------|---------|
|            | No. of   | β's       | 15      | 16     | 17     | 17    | 16    | 21    |         |
|            | Error    | r = 5.634 | -3.44   | -1.45  | 3 . 19 | 1.37  | 3.39  | 0.50  | 2.63    |
|            | %        | 6.500     | -8.49   | -1.47  | -5.81  | 3.77  | 2.70  | 0.29  | - 19.17 |
|            |          | 7.366     | -10,30  | -1.77  | 4.77   | 2.32  | 0.27  | 0.53  | -2.40   |
|            |          | 9,057     | 4.04    | 1.63   | -5.25  | 1.40  | -0.18 | -0.17 | 3.07    |
| $\sigma_R$ | - 755    | 10.500    | -8.27   | -1.50  | -6.58  | 4.61  | -0.45 | 0.04  | -23.06  |
|            | $\Delta$ | 11.943    | -9 49   | -1.38  | -4.68  | 3.87  | 3.56  | 0.52  | -2.99   |
|            |          | 14.479    | -3.84   | -1.19  | -1.17  | 2.37  | -1.34 | -0.36 | 3.34    |
|            | N        | 16.500    | - 12.56 | -0.90  | -10.25 | 8.55  | 0.08  | -0.57 | 35.56   |
|            |          | 18.521    | -28.07  | -2.04  | -17.96 | 13.95 | 12.17 | -0.78 | 8.29    |
|            | Error    | r = 5.634 | -16.92  | -10.56 | -10.87 | -4.56 | 1.49  | -2.86 | 3.81    |
|            | %        | 6.500     | -20.53  | 4.06   | 2.88   | 5.40  | -4.04 | 3.02  | -15.89  |
|            |          | 7.366     | 17.70   | 16.88  | 15.66  | 5.87  | -2.13 | 2.89  | -6.68   |
|            |          | 9.057     | -11.13  | -8.32  | -9.04  | -1.79 | -3.72 | -1.25 | 3.88    |
| $\sigma_T$ |          | 10.500    | -6.90   | 2.41   | 1.57   | 3.62  | -0.44 | 1.23  | -13.80  |
|            |          | 11.943    | 14.82   | 11.01  | 11.10  | 3.73  | 0.96  | 0.80  | -5.34   |
|            |          | 14.479    | -5.43   | -4.46  | -5.47  | 0.21  | -1.44 | -1.09 | 2.69    |
|            | [        | 16.500    | -2.71   | 0.96   | 0.86   | 1.70  | 1.11  | 0.63  | -6.85   |
|            |          | 18.521    | 7.59    | 6.89   | 5.68   | 2.84  | 2.59  | 1.08  | -2.21   |

**表 5** 应力 σ<sub>R</sub> 及 σ<sub>T</sub> 沿径向误差百分比 (φ = 15°) (厚球承受内压力,网格 <sup>1</sup> 3×3)



计算所得元内沿径向( $\phi = 15^\circ$ )各点的径向及切向应力 $\sigma_R, \sigma_T$ 的误差,由表5给

|                | Elemen                            | t         | A     | В     | c      | D      | F     | Е     | Disp.  |
|----------------|-----------------------------------|-----------|-------|-------|--------|--------|-------|-------|--------|
|                | No. of $\beta$ 's                 |           | 15    | 16    | 17     | 17     | 16    | 21    |        |
|                | Error                             | r = 5.211 | -0.44 | -0.34 | -0.35  | -0.08  | -1.46 | 0.15  | 0.15   |
|                | %                                 | 5.500     | -1.12 | -0.85 | -0.67  | -0.43  | -1.65 | -0.08 | 9-2.97 |
|                |                                   | 5.789     | -1.04 | -0.79 | 0.44   | - 0.55 | 0.32  | -0.15 | -0.20  |
|                |                                   | 6.423     | 0.13  | -0.03 | -0.24  | 0.28   | -0.25 | -0.27 | 0.55   |
|                |                                   | 7.009     | -0.45 | -1.03 | -1.14  | -0.36  | -0.78 | -0.47 | -7.51  |
|                | 17-1                              | 7.577     | 0.00  | -0.89 | -0.90  | -0.27  | 0.27  | 0.08  | -0.59  |
|                | $\langle \langle \rangle \rangle$ | 8.634     | 0.02  | -0.38 | -0.42  | 0.11   | -0.05 | -0.26 | 0.79   |
| σ <sub>R</sub> |                                   | 9.500     | -0.23 | -1.39 | -1.58  | -0.45  | -1.15 | -0.72 | -9.80  |
|                |                                   | 10.370    | 0.70  | -1.11 | -1.34  | -0.20  | -0.13 | 0.01  | -0.80  |
|                |                                   | 11.850    | -0.17 | -0.69 | -0.66  | 0.03   | 0.03  | -0.21 | 0.88   |
|                |                                   | 13.000    | 0.02  | -1.73 | -1.95  | -0.51  | -1.28 | -0.83 | 11.42  |
|                |                                   | 14.150    | 1.59  | -1.38 | -1.63  | -0.16  | -0.21 | 0.00  | -0.95  |
|                |                                   | 16.060    | -0.28 | -1.34 | -1.20  | -0.20  | -0.03 | -0.33 | 1.19   |
|                |                                   | 17.500    | 1.33  | -3.18 | -3.53  | -0.35  | -3.22 | -1.52 | -21.60 |
|                |                                   | 1×.940    | 8.23  | -4.17 | - 5.63 | -0.36  | -5.95 | -1.10 | -3.31  |

**表 6A** <u>応力</u> σ<sub>R</sub> 沿径向误差百分比(*φ* = 52.5°) (厚球承受内压力,网格 II 6×5)

报

#### **表 6B** 应力 σr 沿径向误差百分比 (φ = 52.5°) (厚球承受内压力,网格 II 6×5)

|    | Elemen       | t      | A     | В     | с     | D     | F     | E     | Disp.  |
|----|--------------|--------|-------|-------|-------|-------|-------|-------|--------|
|    | No. of B's   |        | 15    | 16    | 17    | 17    | 16    | 21    |        |
|    | Error = 5.21 |        | -2.26 | -1.61 | -2.01 | 0.68  | -3.07 | -0.08 | 0.09   |
|    | %            | 5.500  | 2.13  | 1.13  | 0.30  | 1.55  | -2.96 | -0.09 | -2.63  |
|    |              | 5.789  | 1.94  | 1.20  | 1.64  | -1.56 | 2.13  | -0.26 | -0.61  |
|    |              | 6.423  | -3.29 | -1.97 | -1.62 | 0.14  | -1.18 | 0.08  | 1.01   |
|    |              | 7.000  | 3.41  | 0.69  | 0.28  | 1.77  | -3.19 | -0.23 | - 5.78 |
|    |              | 7.577  | 2.51  | 1.06  | 0.80  | -0.97 | 0.63  | -0.56 | -1.39  |
|    |              | 8.634  | -2.59 | -1.70 | -1.65 | 0.22  | -0.97 | 0.17  | 1.34   |
| στ |              | 9.500  | 2.59  | 0.47  | 0.16  | 1.54  | -2.59 | -0.36 | -6.21  |
| -  |              | 10.370 | 2.31  | 0.90  | 0.78  | -0.76 | 0.17  | -0.62 | -1.48  |
|    |              | 11.850 | -2.17 | -1.49 | -1.48 | 0.16  | -0.51 | 0.14  | 1.02   |
|    |              | 13.000 | 1.67  | 0.30  | 0.06  | 1.10  | -1.96 | -0.32 | -4.62  |
|    |              | 14.150 | 2.03  | 0.91  | 0.81  | -0.45 | -0.05 | -0.48 | -1.04  |
|    |              | 16.060 | -1.61 | -1.20 | -1.11 | -0.07 | -0.30 | 0.07  | 0.55   |
|    |              | 17.500 | 1.51  | 0.35  | 0.25  | 0.58  | -1.61 | -0.11 | -2.66  |
|    |              | 18.940 | 2.21  | 1.29  | 1.17  | -0.04 | -0.21 | -0.21 | -0.55  |

出.同样,元  $E \subset C$  及位移元的  $\sigma_R \subset \sigma_T$  误差沿径向分布,也分别由图 5A 及 5B 给出. 球 内边缘径向位移  $u_R$  的误差,列于表 7 上部.

由表 5 可见,对元内各点应力 σ<sub>R</sub>,元 E 产生的误差最小,其最大绝对值为 0.8%;位移 元最差,为 35.6%;其余的元中,元 B 较好;剩下各元的排列顺序是: F、D、C 及 A. 如考 慮元的边界点在内,由图 5A 可见: 位移元的误差上升至 73.3%,而元C显然波动较小,

90°

55.66

#### 表7 位移 ug 沿径向误差百分比 (厚球承受内压力,网格 I 及网格 II) Mesh I С F E Disp. Element A B D 15 17 17 16 21 --No. of $\beta$ 's 16 -0.60 0,00 -- 12.61 Error $\theta = 0^{\circ}$ - 49.55 -21.32 -2.40 -25.43 -0.90 7.51 % 15° 28.83 15.92 4.50 -15.32 0.60 30° -- 18.32 - 29.13 --2.40 -22.22 -1.80 -9 61 -0.90 -1.20 450 16.52 10.85 3.90 11.11 9.61 4.20 ₩<sub>R</sub> -7.21 -0.90 600 - 16.92 -14.11 -15.62 -22.52 -5.41 75° 6.91 3.60 -2.10 15.02 6.61 3.30 13.21

|   |     | - |      |
|---|-----|---|------|
| м | e s | h | - 11 |

-20.42

-24.92

-39.04

-21.92

-14.71

| Element        |                |                      | A     | В     | с     | D      | F     | E     | Disp.         |
|----------------|----------------|----------------------|-------|-------|-------|--------|-------|-------|---------------|
|                | No. of $\beta$ | t's                  | 15    | 16    | 17    | 17     | 16    | 21 -  |               |
|                | Error          | $\theta = 0^{\circ}$ | -6.91 | -2.70 | 0.00  | -4.20  | 0.00  | -0.90 | 0.00          |
|                | %              | 15°                  | -5.41 | -3.00 | 0.00  | - 3.90 | 0.30  | -0.90 | 0.00          |
|                | 1              | 30°                  | -3.91 | -2.10 | 0.00  | -3.30  | 0.00  | -0.30 | -0.30         |
| u <sub>R</sub> |                | 45°                  | -2.40 | -1.50 | -0.30 | -2.10  | -3.30 | -0.30 | -0.30         |
|                |                | 60°                  | -1.80 | -1.20 | -0.30 | -1.50  | -4.20 | -0.30 | 0.00          |
|                |                | 75°                  | -2.10 | -1.20 | -0.90 | -1.20  | -3.30 | -0.30 | -0.3 <b>0</b> |
|                | 1              | 90°                  | -6.31 | -3.00 | -2.40 | -2.70  | -5.41 | -1.20 | -0.60         |



261

- 4.50

元E基本平稳.

262

至于切向应力 or,如表 5 下部所示,元 E、F、D 仍给出好的结果;元 C、B 次方;元 A 最差. 位移元的结果也不好,由图 5B 可见,其在边界点处的误差相当大,最大值高达. 34.6%.

(B). 网格 II (6×5):

元内沿径向( $\phi = 52.5^{\circ}$ )各点应力 $\sigma_R$ 及 $\sigma_T$ 的误差分别由表 6A, 6B 给出. 元  $E_{\star}$ . C及位移元的误差沿径向分布也分别绘于图 6A 与 6B 中. 成内边缘各点径向位  $B u_R$  的; 误差列于表 7 下部.

对于应力 σ<sub>2</sub>、表 6A 的结果衰明: 所有给出的杂交应力元 *A* ~ *F*,当网格加密时, σ<sub>2</sub> 精度的提高均较位移元快.正如表 6A 及图 6A 所示,这时元 *E*、D 仍给出最好结果, 最大误差绝对值小于 1.6%;元 B 稍差,为 4.2%;元 C、F、A 次之,均不超过 8.5%;位移元 最差,它在元内及边界上均给出的误差最大,其绝对值分别为 21.6% 及 34.6%.

在细网格 II 时,所有杂交应力元中应力 or 精度的提高也较位移元快. 由表 6B 可见,此时元 A 的误差已与网格 I 不同,较位移元小了.最好的元 B 这时误差最大值已降至. -0.6%;元 D、B、C 次方,介于±2%左右;位移元仍给出最低的精度,其在元内点的最大. 误差为-6.2%,在边界点上高至 13.4%(图 6B).

用以上两种网格计算所得径向位移 ug,由表 7 可见:在网格 I中,位移元给出的精 度远比杂交应力元好,其中元 A 最差;但位移元的这种优势到网格 II 时已不明显,这时杂 交应力元的位移收敛很快,精度都迅速提高:元 E 位移的最大误差已降至一1.2%,十分 接近位移元对应值一0.6%;元 D、C、B 的误差绝对值也均小于 4.2%.

总之,由以上二个算例可以看出:就应力及位移而言,这些元中,元 E 给出了相对最 精确的应力分布,在较细网格时,也给出了与位移元十分接近的准确位移值;元 D 次之.对 厚壁筒的应力  $\sigma_r$ ,及厚球的应力  $\sigma_R$  与  $\sigma_r$  (网格较细时)的结果表明:位移元的精度最差; 他们排列的大致顺序是: E、D、B、F、C、A 及位移元. 只在厚壁筒的应力  $\sigma_\theta$  计算时, **位移**元给出的精度较元 A、B、C 好一些,与元D结果相近,但仍较元 E、F 差.

# 五、小 结

用两类方法,导出了六种八节点轴对称实体迴转杂交应力元.它们都准确满足平衡 **方**程、不具有多余的零能模式、并且单元刚度矩阵具有不变性.

对于给出不仅元内中点的应力值、而且给出应力分布方面,计算结果表明,现导出的,杂交应力八节点轴对称元,远较传统的假定位移八节点轴对称元准确;并且当网格较密时,也给出了与假定位移元十分接近的准确位移值.

用第二类方法导出的应力场(元 D、E、F),即: 诸应力分量开始均表示为相同的多 项式,利用平衡方程或协调方程消去一些应力参数,并在检查零能模式及不变性时,对有 关项进行必要的调整. 这样得到的应力场,从目前研究结果表明,往往比开始选择应力、 应变分量一一对应,再调整参数以同时满足以上三方面的要求,所得的应力场更为合理.

正如我们已作过的四节点轴对称元的结果一样<sup>(3)</sup>,具有扫除多余零能模式所需最少 **β**数的应力场(元 *A*)常常并不一定是较好的应力场.

#### 参考文献

- [1] Spilker, R. L. and Pian, T. H. H. A study of axisymmetric solid of revolution elements based on the sesumed-stress hybrid model, Computers and Structures, 9, (1978), 273-279.
- [2] Spilker, R. L. Improved hybrid stress exisymmetric element including behavior of nearly incompressible materials, Int. J. Num. Engng., 17, (1981), 483-501.
- [3] Tian, Z. S. and Pian, T. H. H. Axisymmetric solid elements by a rational hybrid stress method, Computers and Structures, 20, (1985), 141-149.
- [4] Pian T. H. H. and Sumibara, K. Rational approch for essumed stress finite element, Int. J. Moth. Engag., 20, (1984), 1665-1695.
- [5] Pisa, T. H. H. Derivation of element stiffness metrices by assumed stress distributions, AIAA J. 2, (1964), 1333-1336.
- [6] Pian T. H. H. and Chen, D. P., On the suppression of zero enersy deformation modes, Int. J. Num. Mesh. Engng, 19, (1983), 1741-1752.

# AXISYMMETRIC SOLID-OF-REVOLUTION ELEMENTS BASED ON THE ASSUMED-STRESS HYBRID MODEL

#### Tian Zongshu

(Graduate School, Academia Sinica)

Abstract A series of axisymmetric solid-of-revolution elements with 8-node and quadrilateral cross section have been developed based on the assumed-stress hybrid model. A quadratic boundary displacement assumption is employed for each element and a variety of interior stress assumptions have been made. Two different kinds of method used for developing stress field have been studied. Example problems of a thick cylinder under internal pressure and a thick sphere under internal pressure are utilized to evaluate the various elements, and a desirable stress assumption has been identified. Comparions of present results with those obtained by the use of 8-node element based on the assumed displacement model indicate that this hybrid stress element is far superior in predicting the stress distribution.

Key words axisymmetric, hybrid stres method, solid-of-revolution element, zero-energy mode, invariance.