EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

重力环境下液体大幅晃动运动脉动球模型及实验研究

卢煜 岳宝增 马伯乐

卢煜, 岳宝增, 马伯乐. 重力环境下液体大幅晃动运动脉动球模型及实验研究. 力学学报, 2022, 54(9): 1-9 doi: 10.6052/0459-1879-22-187
引用本文: 卢煜, 岳宝增, 马伯乐. 重力环境下液体大幅晃动运动脉动球模型及实验研究. 力学学报, 2022, 54(9): 1-9 doi: 10.6052/0459-1879-22-187
Lu Yu, Yue Bao-zeng, Ma Bo-le. Moving pulsating ball equivalent model and its validation experiment for large amplitude liquid slosh in gravity environment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-9 doi: 10.6052/0459-1879-22-187
Citation: Lu Yu, Yue Bao-zeng, Ma Bo-le. Moving pulsating ball equivalent model and its validation experiment for large amplitude liquid slosh in gravity environment. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(9): 1-9 doi: 10.6052/0459-1879-22-187

重力环境下液体大幅晃动运动脉动球模型及实验研究

doi: 10.6052/0459-1879-22-187
基金项目: 国家自然科学基金项目(12132002, 11772049)资助
详细信息
    作者简介:

    岳宝增, 教授, 主要研究方向:液体非线性晃动动力学及航天器动力学与控制等. E-mail: bzyue@bit.edu.cn

  • 中图分类号: O353.1

MOVING PULSATING BALL EQUIVALENT MODEL AND ITS VALIDATION EXPERIMENT FOR LARGE AMPLITUDE LIQUID SLOSH IN GRAVITY ENVIRONMENT

  • 摘要: 现代航天器通常携带大量的液体推进剂, 在航天器的姿态发生变化的过程中, 由于惯性力和重力的作用, 可能会导致液体燃料发生剧烈晃动, 由此产生附加的晃动力会对航天器造成重要影响. 为了得到液体晃动的规律并满足星载计算机实时计算的要求, 本文研究并验证了一种用于等效液体大幅晃动的动力学模型. 首先将液体大幅晃动运动脉动球模型(MPBM)推广到重力环境中, 通过脉动球的牛顿−欧拉动力学方程和“呼吸运动”过程中能量关系式, 推导出晃动力法向分量的表达式. 同时, 引入不参与晃动的液体的等效模型, 使得液体质心位置的计算更加准确. 通过和文献中实验数据以及CFD软件的计算结果进行比较, 分别验证了推广的MPBM模型在大幅晃动、零动量机动工况下的有效性, 并基于该等效模型, 研究了脉冲激励的不同时序对航天器中液体晃动响应的影响. 最后, 设计并搭建了用于精确测量液体晃动力的实验平台, 验证了MPBM模型在等效非球形储箱的液体晃动时也同样可以很好地反应出晃动力的变化趋势. 本文的研究工作对进一步研究重力环境中充液航天器刚–液耦合动力学行为具有重要的参考价值.

     

  • 图  1  改进的MPBM模型示意图

    Figure  1.  Schematic diagram of improved MPBM model

    图  2  MPBM模型运动分解示意图

    Figure  2.  Schematic diagram of motion decomposition of MPBM model

    图  3  液体大幅晃动的晃动力

    Figure  3.  Sloshing force of large amplitude liquid sloshing

    图  4  液体大幅晃动质心坐标x方向分量

    Figure  4.  X-direction component of centroid coordinate of large amplitude liquid sloshing

    图  5  液体在x-z平面上的压强和流场

    Figure  5.  pressure and vectors of liquid on x-z plane

    图  7  零动量机动的晃动力

    Figure  7.  Sloshing force of zero momentum maneuver

    图  8  两种方案的加速度时序

    Figure  8.  Acceleration excitation of two cases

    图  9  两种方案的液体晃动响应

    Figure  9.  Sloshing Responses of Liquid of two cases

    图  10  实验装置示意图

    Figure  10.  Schematic diagram of experimental device

    图  11  实验装置实物图

    Figure  11.  Photo of experimental device

    图  12  实验数据和Flow3D对比图

    Figure  12.  Comparison between experimental data and Flow3D

    图  13  矩形储箱的等效MPBM模型

    Figure  13.  Equivalent MPBM model of rectangular tank

    图  14  实验数据和MPBM模型对比图

    Figure  14.  Comparison between experimental data and MPBM model

  • [1] Hoch R, Wurm F H. Numerical and experimental investigation of sloshing under large amplitude roll excitation. Journal of Hydrodynamics, 2021, 33(4): 787-803 doi: 10.1007/s42241-021-0074-0
    [2] 刘峰, 岳宝增, 唐勇. 多充液贮腔航天器耦合动力学与姿态控制. 宇航学报, 2020, 41(1): 19-26 (Liu Feng, Yue Baozeng, Tang Yong. Dynamics modeling and attitude control of spacecraft with multiple propellant tanks. Journal of Astronautics, 2020, 41(1): 19-26 (in Chinese) doi: 10.3873/j.issn.1000-1328.2020.01.003

    LIU Feng, YUE Bao-zeng, TANG Yong. Dynamics Modeling and Attitude Control of Spacecraft with Multiple Propellant Tanks[J]. Journal of Astronautics, 2020, 41(1): 19-26. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2020.01.003
    [3] Hari M D, Sarigul-Klijn N. Sloshing behavior in rigid and flexible propellant tanks: computations and experimental validation. Journal of Spacecraft and Rockets, 2021, 58(1): 100-109 doi: 10.2514/1.A34540
    [4] Chiba M, Magata H. Influence of liquid sloshing on dynamics of flexible space structures. Journal of Sound and Vibration, 2017, 401: 1-22 doi: 10.1016/j.jsv.2017.04.029
    [5] 孙梓煜, 岳宝增, 刘峰, 等. 充液柔性航天器刚-液-柔耦合动力学研究的凯恩方法. 宇航学报, 2021, 42(5): 552-561 (Sun Ziyu, Yue Baozeng, Liu Feng, et al. Study on rigid-liquid-flex coupling dynamics for spacecraft by Kane’s method. Journal of Astronautics, 2021, 42(5): 552-561 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.05.002

    SUN Zi-yu, YUE Bao-zeng, LIU Feng, et al. Study on Rigid-Liquid-Flex Coupling Dynamics for Spacecraft by Kane’s Method[J]. Journal of Astronautics, 2021, 42(5): 552-561. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2021.05.002
    [6] 吴文军, 高超南, 岳宝增, 等. 圆柱贮箱内液体非线性稳态晃动实验及动力学特性分析. 宇航学报, 2021, 42(9): 1078-1089 (Wu Wenjun, Gao Chaonan, Yue Baozeng, et al. Experimental study and dynamic characteristic analysis of nonlinear steady state sloshing of liquid in a cylindrical tank. Journal of Astronautics, 2021, 42(9): 1078-1089 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.09.003

    WU Wen-jun, GAO Chao-nan, YUE Bao-zeng, et al. Experimental Study and Dynamic Characteristic Analysis of Nonlinear Steady State Sloshing of Liquid in a Cylindrical Tank[J]. Journal of Astronautics, 2021, 42(9): 1078-1089. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2021.09.003
    [7] Feng L, Baozeng Y, Banerjee A K, et al. Large motion dynamics of in-orbit flexible spacecraft with large-amplitude propellant slosh. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 438-450 doi: 10.2514/1.G004685
    [8] 贺元军, 尹立中, 马兴瑞等. 液体非线性晃动的同步Hopf分叉现象. 工程力学, 2007, 24(7): 72-76 (He Yuanjun, Yin Lizhong, Ma Xingrui, et al. Synchronous Hopf bifurcation of liquid nonlinear sloshing. Engineering Mechanics, 2007, 24(7): 72-76 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.07.013

    He Yuanjun, Yin Lizhong, Ma Xingrui, et al. Synchronous Hopf bifurcation of liquid nonlinear sloshing. Engineering Mechanics, 2007, 24(7): 72-76 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.07.013
    [9] 岳宝增. 液体大幅晃动动力学. 北京: 科学出版社, 2011

    Yue Baozeng. Large Amplitude Liquid Sloshing Dynamics. Beijing: Science Press, 2011 (in Chinese)
    [10] Ma B, Yue B, Tang Y, et al. Studies on the liquid sloshing and rigid-liquid-flexible coupling dynamics of spacecraft//. Advances In Nonlinear Dynamics. Springer, Cham, 2022: 267-279
    [11] 刘峰, 岳宝增, 马伯乐, 等. 燃料消耗下充液航天器等效动力学建模与分析. 力学学报, 2020, 52(5): 1454-1464 (Liu Feng, Yue Baozeng, Ma Bole, et al. Equivalent dynamics modeling and analysis of liquid-filled spacecraft with fuel consumption. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464 (in Chinese) doi: 10.6052/0459-1879-20-027

    LIU Feng, YUE Bao-zeng, MA Bo-le, et al. EQUIVALENT DYNAMICS MODELING AND ANALYSIS OF LIQUID-FILLED SPACECRAFT WITH FUEL CONSUMPTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464. (in Chinese)) doi: 10.6052/0459-1879-20-027
    [12] Berry R L, Tegart J R, Experimental study of transient liquid motion in orbiting spacecraft, NASA-CR-144003, 1975
    [13] Berry R L, Tegart J R, Experimental study of transient liquid motion in orbiting spacecraft, NASA-CR-144213, 1976
    [14] Berry R L, Tegart J R, Analysis and test for space shuttle propellant dynamics (1/60 th scale model test results), NASA-CR-151681, 1978
    [15] Huang H, Yang L, Zhang H, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank. Journal of Astronautics, 2010, 31(1): 55-59
    [16] 黄华, 杨雷, 张熇, 等. 航天器储箱大幅晃动三维质心面等效力学模型研究. 宇航学报, 2010, 31(1): 55-59 (Huang Hua, Yang Lei, Zhang He, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank. Journal of Astronautics, 2010, 31(1): 55-59 (in Chinese) doi: 10.3873/j.issn.1000-1328.2010.01.008

    Huang Hua, Yang Lei, Zhang He, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank[J]. Journal of Astronautics, 2010, 31( 1): 55 – 59. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2010.01.008
    [17] Zhou Z, Huang H. Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks. Acta Astronautica, 2015, 111: 222-229 doi: 10.1016/j.actaastro.2015.02.023
    [18] Liu F, Yue B, Tang Y, et al. 3DOF-rigid-pendulum analogy for nonlinear liquid slosh in spherical propellant tanks. Journal of Sound and Vibration, 2019, 460: 114907 doi: 10.1016/j.jsv.2019.114907
    [19] Vreeburg JPB, Chato DJ. Models for liquid impact onboard sloshsat FLEVO, AIAA Space 2000 Conference and Exposition, U. S, 2000
    [20] Vreeburg JPB. Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity. Acta Astronautica, 1997, 40(2-8): 257-274
    [21] Vreeburg J P B. Acceleration Measurements on Sloshsat FLEVO for Liquid Force and Location Determination, NLR-TP-2000-062, 2000.
    [22] Vreeburg J P B. Spacecraft maneuvers and slosh control. IEEE Control Systems Magazine, 2005, 25(3): 12-16 doi: 10.1109/MCS.2005.1432593
    [23] Deng M L, Yue B Z. Attitude dynamics and control of liquid filled spacecraft with large amplitude fuel slosh. Journal of Mechanics, 2017, 33(1): 125-136 doi: 10.1017/jmech.2016.60
    [24] Deng M, Yue B. Attitude dynamics and control of spacecraft with multiple liquid propellant tanks. Journal of Aerospace Engineering, 2016, 29(6): 04016042 doi: 10.1061/(ASCE)AS.1943-5525.0000636
    [25] Deng M, Yue B Z, Huang H. Study on the equivalent mechanical model for large amplitude slosh. Journal of Astronautics, 2016, 37(6): 631-638
    [26] 邓明乐. 液体大幅晃动等效力学模型及航天器刚-液-柔-控耦合动力学研究. [博士论文]. 北京: 北京理工大学, 2017

    Deng Mingle. Studies on the Equivalent Mechanical Model of Large Amplitude Liquid Slosh and Rigid-Liquid-Flex-Control Coupling Dynamics of Spacecraft. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2017 (in Chinese)
    [27] Yong T, Baozeng Y. Simulation of large-amplitude three-dimensional liquid sloshing in spherical tanks. AIAA Journal, 2017, 55(6): 2052-2059 doi: 10.2514/1.J055798
    [28] Storey J M, Kirk D R, Gutierrez H, et al. Experimental, numerical and analytical characterization of slosh dynamics applied to in-space propellant storage and management[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. 2015: 4077
    [29] 杨琦, 李德友, 常洪, 等. 正弦激励下矩形容器内液体晃动特性研究. 西华大学学报(自然科学版), 2021, 40(5): 9-19 (Yang Qi, Li Deyou, Chang Hong, et al. Study on characteristics of liquid sloshing in rectangular container under sinusoidal excitation. Journal of Xihua University (Natural Science Edition) , 2021, 40(5): 9-19 (in Chinese) doi: 10.12198/j.issn.1673-159X.3986

    YANG Qi, LI Deyou, CHANG Hong, et al. Study on Characteristics of Liquid Sloshing in Rectangular Container Under Sinusoidal Excitation[J]. Journal of Xihua University (Natural Science Edition), 2021, 40(5): 9-19. (in Chinese)) doi: 10.12198/j.issn.1673-159X.3986
    [30] Abramson H N. The Dynamic Behavior of Liquids in Moving Containers. Washing DC, USA: NASA Special Publication 1966
  • 加载中
图(13)
计量
  • 文章访问数:  25
  • HTML全文浏览量:  10
  • PDF下载量:  5
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-05
  • 录用日期:  2022-06-21
  • 网络出版日期:  2022-06-22

目录

    /

    返回文章
    返回