[1] |
Hoch R, Wurm F H. Numerical and experimental investigation of sloshing under large amplitude roll excitation. Journal of Hydrodynamics, 2021, 33(4): 787-803 doi: 10.1007/s42241-021-0074-0
|
[2] |
刘峰, 岳宝增, 唐勇. 多充液贮腔航天器耦合动力学与姿态控制. 宇航学报, 2020, 41(1): 19-26 (Liu Feng, Yue Baozeng, Tang Yong. Dynamics modeling and attitude control of spacecraft with multiple propellant tanks. Journal of Astronautics, 2020, 41(1): 19-26 (in Chinese) doi: 10.3873/j.issn.1000-1328.2020.01.003LIU Feng, YUE Bao-zeng, TANG Yong. Dynamics Modeling and Attitude Control of Spacecraft with Multiple Propellant Tanks[J]. Journal of Astronautics, 2020, 41(1): 19-26. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2020.01.003
|
[3] |
Hari M D, Sarigul-Klijn N. Sloshing behavior in rigid and flexible propellant tanks: computations and experimental validation. Journal of Spacecraft and Rockets, 2021, 58(1): 100-109 doi: 10.2514/1.A34540
|
[4] |
Chiba M, Magata H. Influence of liquid sloshing on dynamics of flexible space structures. Journal of Sound and Vibration, 2017, 401: 1-22 doi: 10.1016/j.jsv.2017.04.029
|
[5] |
孙梓煜, 岳宝增, 刘峰, 等. 充液柔性航天器刚-液-柔耦合动力学研究的凯恩方法. 宇航学报, 2021, 42(5): 552-561 (Sun Ziyu, Yue Baozeng, Liu Feng, et al. Study on rigid-liquid-flex coupling dynamics for spacecraft by Kane’s method. Journal of Astronautics, 2021, 42(5): 552-561 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.05.002SUN Zi-yu, YUE Bao-zeng, LIU Feng, et al. Study on Rigid-Liquid-Flex Coupling Dynamics for Spacecraft by Kane’s Method[J]. Journal of Astronautics, 2021, 42(5): 552-561. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2021.05.002
|
[6] |
吴文军, 高超南, 岳宝增, 等. 圆柱贮箱内液体非线性稳态晃动实验及动力学特性分析. 宇航学报, 2021, 42(9): 1078-1089 (Wu Wenjun, Gao Chaonan, Yue Baozeng, et al. Experimental study and dynamic characteristic analysis of nonlinear steady state sloshing of liquid in a cylindrical tank. Journal of Astronautics, 2021, 42(9): 1078-1089 (in Chinese) doi: 10.3873/j.issn.1000-1328.2021.09.003WU Wen-jun, GAO Chao-nan, YUE Bao-zeng, et al. Experimental Study and Dynamic Characteristic Analysis of Nonlinear Steady State Sloshing of Liquid in a Cylindrical Tank[J]. Journal of Astronautics, 2021, 42(9): 1078-1089. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2021.09.003
|
[7] |
Feng L, Baozeng Y, Banerjee A K, et al. Large motion dynamics of in-orbit flexible spacecraft with large-amplitude propellant slosh. Journal of Guidance, Control, and Dynamics, 2020, 43(3): 438-450 doi: 10.2514/1.G004685
|
[8] |
贺元军, 尹立中, 马兴瑞等. 液体非线性晃动的同步Hopf分叉现象. 工程力学, 2007, 24(7): 72-76 (He Yuanjun, Yin Lizhong, Ma Xingrui, et al. Synchronous Hopf bifurcation of liquid nonlinear sloshing. Engineering Mechanics, 2007, 24(7): 72-76 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.07.013He Yuanjun, Yin Lizhong, Ma Xingrui, et al. Synchronous Hopf bifurcation of liquid nonlinear sloshing. Engineering Mechanics, 2007, 24(7): 72-76 (in Chinese) doi: 10.3969/j.issn.1000-4750.2007.07.013
|
[9] |
岳宝增. 液体大幅晃动动力学. 北京: 科学出版社, 2011Yue Baozeng. Large Amplitude Liquid Sloshing Dynamics. Beijing: Science Press, 2011 (in Chinese)
|
[10] |
Ma B, Yue B, Tang Y, et al. Studies on the liquid sloshing and rigid-liquid-flexible coupling dynamics of spacecraft//. Advances In Nonlinear Dynamics. Springer, Cham, 2022: 267-279
|
[11] |
刘峰, 岳宝增, 马伯乐, 等. 燃料消耗下充液航天器等效动力学建模与分析. 力学学报, 2020, 52(5): 1454-1464 (Liu Feng, Yue Baozeng, Ma Bole, et al. Equivalent dynamics modeling and analysis of liquid-filled spacecraft with fuel consumption. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464 (in Chinese) doi: 10.6052/0459-1879-20-027LIU Feng, YUE Bao-zeng, MA Bo-le, et al. EQUIVALENT DYNAMICS MODELING AND ANALYSIS OF LIQUID-FILLED SPACECRAFT WITH FUEL CONSUMPTION[J]. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(5): 1454-1464. (in Chinese)) doi: 10.6052/0459-1879-20-027
|
[12] |
Berry R L, Tegart J R, Experimental study of transient liquid motion in orbiting spacecraft, NASA-CR-144003, 1975
|
[13] |
Berry R L, Tegart J R, Experimental study of transient liquid motion in orbiting spacecraft, NASA-CR-144213, 1976
|
[14] |
Berry R L, Tegart J R, Analysis and test for space shuttle propellant dynamics (1/60 th scale model test results), NASA-CR-151681, 1978
|
[15] |
Huang H, Yang L, Zhang H, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank. Journal of Astronautics, 2010, 31(1): 55-59
|
[16] |
黄华, 杨雷, 张熇, 等. 航天器储箱大幅晃动三维质心面等效力学模型研究. 宇航学报, 2010, 31(1): 55-59 (Huang Hua, Yang Lei, Zhang He, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank. Journal of Astronautics, 2010, 31(1): 55-59 (in Chinese) doi: 10.3873/j.issn.1000-1328.2010.01.008Huang Hua, Yang Lei, Zhang He, et al. Research on 3D constraint surface model for large amplitude liquid sloshing on spacecraft tank[J]. Journal of Astronautics, 2010, 31( 1): 55 – 59. (in Chinese)) doi: 10.3873/j.issn.1000-1328.2010.01.008
|
[17] |
Zhou Z, Huang H. Constraint surface model for large amplitude sloshing of the spacecraft with multiple tanks. Acta Astronautica, 2015, 111: 222-229 doi: 10.1016/j.actaastro.2015.02.023
|
[18] |
Liu F, Yue B, Tang Y, et al. 3DOF-rigid-pendulum analogy for nonlinear liquid slosh in spherical propellant tanks. Journal of Sound and Vibration, 2019, 460: 114907 doi: 10.1016/j.jsv.2019.114907
|
[19] |
Vreeburg JPB, Chato DJ. Models for liquid impact onboard sloshsat FLEVO, AIAA Space 2000 Conference and Exposition, U. S, 2000
|
[20] |
Vreeburg JPB. Dynamics and control of a spacecraft with a moving pulsating ball in a spherical cavity. Acta Astronautica, 1997, 40(2-8): 257-274
|
[21] |
Vreeburg J P B. Acceleration Measurements on Sloshsat FLEVO for Liquid Force and Location Determination, NLR-TP-2000-062, 2000.
|
[22] |
Vreeburg J P B. Spacecraft maneuvers and slosh control. IEEE Control Systems Magazine, 2005, 25(3): 12-16 doi: 10.1109/MCS.2005.1432593
|
[23] |
Deng M L, Yue B Z. Attitude dynamics and control of liquid filled spacecraft with large amplitude fuel slosh. Journal of Mechanics, 2017, 33(1): 125-136 doi: 10.1017/jmech.2016.60
|
[24] |
Deng M, Yue B. Attitude dynamics and control of spacecraft with multiple liquid propellant tanks. Journal of Aerospace Engineering, 2016, 29(6): 04016042 doi: 10.1061/(ASCE)AS.1943-5525.0000636
|
[25] |
Deng M, Yue B Z, Huang H. Study on the equivalent mechanical model for large amplitude slosh. Journal of Astronautics, 2016, 37(6): 631-638
|
[26] |
邓明乐. 液体大幅晃动等效力学模型及航天器刚-液-柔-控耦合动力学研究. [博士论文]. 北京: 北京理工大学, 2017Deng Mingle. Studies on the Equivalent Mechanical Model of Large Amplitude Liquid Slosh and Rigid-Liquid-Flex-Control Coupling Dynamics of Spacecraft. [PhD Thesis]. Beijing: Beijing Institute of Technology, 2017 (in Chinese)
|
[27] |
Yong T, Baozeng Y. Simulation of large-amplitude three-dimensional liquid sloshing in spherical tanks. AIAA Journal, 2017, 55(6): 2052-2059 doi: 10.2514/1.J055798
|
[28] |
Storey J M, Kirk D R, Gutierrez H, et al. Experimental, numerical and analytical characterization of slosh dynamics applied to in-space propellant storage and management[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. 2015: 4077
|
[29] |
杨琦, 李德友, 常洪, 等. 正弦激励下矩形容器内液体晃动特性研究. 西华大学学报(自然科学版), 2021, 40(5): 9-19 (Yang Qi, Li Deyou, Chang Hong, et al. Study on characteristics of liquid sloshing in rectangular container under sinusoidal excitation. Journal of Xihua University (Natural Science Edition) , 2021, 40(5): 9-19 (in Chinese) doi: 10.12198/j.issn.1673-159X.3986YANG Qi, LI Deyou, CHANG Hong, et al. Study on Characteristics of Liquid Sloshing in Rectangular Container Under Sinusoidal Excitation[J]. Journal of Xihua University (Natural Science Edition), 2021, 40(5): 9-19. (in Chinese)) doi: 10.12198/j.issn.1673-159X.3986
|
[30] |
Abramson H N. The Dynamic Behavior of Liquids in Moving Containers. Washing DC, USA: NASA Special Publication 1966
|