EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

连接组合结构协同动力学拓扑优化设计

文明 王栋

文明, 王栋. 连接组合结构协同动力学拓扑优化设计. 力学学报, 待出版 doi: 10.6052/0459-1879-22-292
引用本文: 文明, 王栋. 连接组合结构协同动力学拓扑优化设计. 力学学报, 待出版 doi: 10.6052/0459-1879-22-292
Wen Ming, Wang Dong. Collaborative dynamics topology optimization of combined structure. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-292
Citation: Wen Ming, Wang Dong. Collaborative dynamics topology optimization of combined structure. Chinese Journal of Theoretical and Applied Mechanics, in press doi: 10.6052/0459-1879-22-292

连接组合结构协同动力学拓扑优化设计

doi: 10.6052/0459-1879-22-292
基金项目: 国家自然科学基金(51975470)资助项目
详细信息
    作者简介:

    王栋, 教授, 主要研究方向: 结构动力学行为分析与优化设计. E-mail: dwang@nwpu.edu.cn

  • 中图分类号: O327

COLLABORATIVE DYNAMICS TOPOLOGY OPTIMIZATION OF COMBINED STRUCTURE

  • 摘要: 工程实际结构通常是由多个部件组合而成, 且各部件通过连接构件传递彼此间的载荷和振动能量. 连接构件的布局设计与约束状况对整个结构的拓扑构型、动态性能以及承载能力等均有较大的影响. 本文研究连接组合结构构型与部件间连接构件布局的协同动力学优化问题, 使整体结构在简谐激励作用下动柔顺度达到最小. 以弹簧连接单元模拟连接构件的约束及承载状况, 将承力构件材料的相对密度与弹簧连接单元的相对刚度同时作为设计变量. 在材料体积约束以及连接构件个数约束的条件下, 采用移动渐近优化算法开展组合结构的拓扑构型与连接构件的布局协同优化设计. 通过与无连接约束构件的单体式结构拓扑优化结果进行对比, 展示了组合结构拓扑构型的变化, 以及连接约束的布局设计对整体材料分布和结构动力性能的影响. 数值结果表明, 虽然组合结构协同优化设计的动柔顺度总是大于单体式结构的结果, 但结构固有频率的变化却确具有一定的偶然性, 即可提供更优越的结构构型与连接布局设计.

     

  • 图  1  连接约束力学模型

    Figure  1.  Mechanical model of a linkage member

    图  2  双板弹簧连接组合结构

    Figure  2.  A combined structure of two panels with spring linkage members

    图  3  连接组合结构拓扑优化构型对比

    Figure  3.  Comparison of topology configurations between the combined structure with four linkage members and the integral one

    图  4  协同优化设计目标函数与约束函数迭代过程

    Figure  4.  Iterative histories of the design objective and linkage member number of the collaborative topology optimization

    图  5  连接组合结构拓扑优化构型(8弹簧连接单元)

    Figure  5.  Configuration of the combined structure of two panels with eight spring linkage members

    图  6  结构前二阶固有振型对比

    Figure  6.  Comparison of the first two natural modes between the combined and integral structures

    图  7  连接组合深梁结构

    Figure  7.  Combined deep beam with spring linkage members

    图  8  连接组合结构与单体结构拓扑优化构型对比

    Figure  8.  Comparison of topology configurations between the combined deep beam structure with eight linkage members and integral one

    图  9  连接组合结构与单体式结构动态变形对比

    Figure  9.  Comparison of the structural dynamic deformations between the combined and integral deep beams

    表  1  拓扑优化结构的动柔顺度以及前二阶固有频率对比

    Table  1.   Comparison of the optimal dynamic compliance and the first two natural frequencies

    Structure typeCd /JNatural frequency /Hz
    1 st2 nd
    Combinedcollaborative5.4657389.4567.2
    specified5.7763367.6638.4
    Integral4.9989268.5447.4
    下载: 导出CSV

    表  2  拓扑优化结构的动柔顺度以及前二阶固有频率对比

    Table  2.   Comparison of the optimal dynamic compliance and the first two natural frequencies

    Structure typeCd /JNatural frequency /Hz
    initialoptimal
    1 st1 st2 nd
    Combinedcollaborative1.7974278.6557.4696.3
    specified1.9081256.7512.9748.9
    Integral1.5980281.6578.8892.3
    下载: 导出CSV
  • [1] Zargham S, Ward TA, Ramli R, et al. Topology optimization: A review for structural designs under vibration problems. Structural and Multidisciplinary Optimization, 2016, 53(6): 1157-1177 doi: 10.1007/s00158-015-1370-5
    [2] 刘虎, 张卫红, 朱继宏. 简谐力激励下结构拓扑优化与频率影响分析. 力学学报, 2013, 45(4): 588-597 doi: 10.6052/0459-1879-12-253

    Liu Hu, Zhang Weihong, Zhu Jihong. Structural topology optimization and frequency influence analysis under harmonic force excitations. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(4): 588-597 (in Chinese) doi: 10.6052/0459-1879-12-253
    [3] 王栋. 载荷作用位置不确定条件下结构动态稳健性拓扑优化设计. 力学学报, 2021, 53(5): 1439-1448 doi: 10.6052/0459-1879-21-009

    Wang Dong. Robust dynamic topology optimization of continuum structure subjected to harmonic excitation of loading position uncertainty. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(5): 1439-1448 (in Chinese) doi: 10.6052/0459-1879-21-009
    [4] 王睿, 张晓鹏, 亢战. 以动柔度为目标的结构阻尼材料层拓扑优化. 振动与冲击, 2013, 32(22): 36-40 doi: 10.3969/j.issn.1000-3835.2013.22.007

    Wang Rui, Zhang Xiaopeng, Kang Zhan. Topology optimization of damping layer in structures for minimizing dynamic compliance. Journal of Vibration and Shock, 2013, 32(22): 36-40 (in Chinese) doi: 10.3969/j.issn.1000-3835.2013.22.007
    [5] 张桥, 张卫红, 朱继宏. 动力响应约束下的结构拓扑优化设计. 机械工程学报, 2010, 46(15): 45-51 doi: 10.3901/JME.2010.15.045

    Zhang Qiao, Zhang Weihong, Zhu Jihong. Topology optimization of structures under dynamic response constraints. Journal of Mechanical Engineering, 2010, 46(15): 45-51 (in Chinese) doi: 10.3901/JME.2010.15.045
    [6] 铁军, 隋允康, 彭细荣. 互逆规划的拓宽和深化及其在结构拓扑优化的应用. 力学学报, 2020, 52(6): 1822-1837 doi: 10.6052/0459-1879-20-188

    Tie Jun, Sui Yunkang, Peng Xirong. Widening and deepening of reciprocal programming and its application to structural topology optimization. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(6): 1822-1837 (in Chinese) doi: 10.6052/0459-1879-20-188
    [7] Li B, Huang C, Xuan C, et al. Dynamic stiffness design of plate/shell structures using explicit topology optimization. Thin-Walled Structures, 2019, 140(542-564)
    [8] Liu T, Zhu JH, Zhang WH, et al. Integrated layout and topology optimization design of multi-component systems under harmonic base acceleration excitations. Structural and Multidisciplinary Optimization, 2019, 59: 1053-1073 doi: 10.1007/s00158-019-02200-2
    [9] Niu B, He X, Yang R, et al. On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Structural and Multidisciplinary Optimization, 2018, 57(6): 2291-2307 doi: 10.1007/s00158-017-1859-1
    [10] 房占鹏, 侯俊剑, 姚雷. 简谐力激励下约束阻尼结构动力学拓扑优化. 噪声与振动控制, 2018, 38(增刊 1): 13 l-135 doi: 10.3969/j.issn.1006-1355.2018.Z1.024

    Fang Zhanpeng, Hou Junjian, Yao Lei. Dynamic topology optimization of constrained layer damping structure under harmonic force excitation. Noise and Vibration Contro1, 2018, 38(Z1): 131-135 (in Chinese) doi: 10.3969/j.issn.1006-1355.2018.Z1.024
    [11] Sui YK, Peng XR. Modeling, solving and application for topology optimization of continuum structures: ICM method based on step function. Elsevier, 2018
    [12] 梁宽, 付莉莉, 张晓鹏等. 基于材料场级数展开的结构动力学拓扑优化. 航空学报, 2021, 40 doi: 10.7527/S1000-6893.2021.26002

    Liang Kuan, Fu Lili, Zhang Xiaopeng, et al. Topology optimization of structural dynamics based on material-field series-expansion. Acta Aeronautica et Astronautica Sinica, 2021, 40 (in Chinese)) doi: 10.7527/S1000-6893.2021.26002
    [13] 李佳霖, 赵剑, 孙直等. 基于移动可变形组件法(MMC)的运载火箭传力机架结构的轻量化设计. 力学学报, 2022, 54(1): 244-251 doi: 10.6052/0459-1879-21-309

    Li Jialin, Zhao Jian, Sun Zhi, et al. Lightweight design of transmission frame structures for launch vehicles based on moving morphable components(MMC) approach. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(1): 244-251 (in Chinese) doi: 10.6052/0459-1879-21-309
    [14] 马晶, 赵明宣, 王浩淼等. 考虑界面力学性能的组件及结构的协同优化. 力学学报, 2021, 53(6): 1758-1768 doi: 10.6052/0459-1879-21-010

    Ma Jing, Zhao Mingxuan, Wang Haomiao, et al. Integrated optimization of embedded components and structure considering mechanical properties of connecting interface. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(6): 1758-1768 (in Chinese) doi: 10.6052/0459-1879-21-010
    [15] 李郑发, 曹登庆. 折叠太阳翼支承点分布优化分析, 宇航学报, 2015, 36(6): 661-666

    Li Zhengfa, Cao Dengqing. Optimization analysis of supporting point distribution for folding solar panels, Journal of Astronautics, 2015, 36(6): 661-666 (in Chinese)
    [16] 王立鹏, 何飞, 郭文杰等. 载人运载火箭飞船支撑结构动响应优化设计. 载人航天, 2017, 2(23): 168-172

    Wang Lipeng, He Fei, Guo Wenjie, et al, Dynamic response optimization design of manned launch vehicle supports for spacecraft, Manned Spaceflight, 2017, 2(23): 168-172 (in Chinese)
    [17] 何贵勤, 曹登庆, 陈帅等. 挠性航天器太阳翼全局模态动力学建模与实验研究. 力学学报, 2021, 53(8): 2312-2322 doi: 10.6052/0459-1879-21-170

    He Guiqin, Cao Dengqing, Chen Shuai, et al. Study on global mode dynamic modeling and experiment for a solar array of the flexible spacecraft. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(8): 2312-2322 (in Chinese) doi: 10.6052/0459-1879-21-170
    [18] Zelickman Y, Amir O. Optimization of plate supports using a feature mapping approach with techniques to avoid local minima. Structural and Multidisciplinary Optimization, 2022, 65: 31 doi: 10.1007/s00158-021-03135-3
    [19] Wang J, Zhu JH, Hou J. et al. Lightweight design of a bolt-flange sealing structure based on topology optimization. Structural and Multidisciplinary Optimization, 2020, 62: 3413-3428
    [20] Zhu JH, Zhang WH. Maximization of structural natural frequency with optimal support layout. Structural and Multidisciplinary Optimization, 2006, 31: 462-469 doi: 10.1007/s00158-005-0593-2
    [21] Zhu JH, Hou J, Zhang WH, et al. Structural topology optimization with constraints on multi-fastener joint loads. Structural and Multidisciplinary Optimization, 2014, 50(4): 561-571 doi: 10.1007/s00158-014-1071-5
    [22] 乔赫廷, 刘书田. 结构构型与结构间连接方式协同优化设计. 力学学报, 2009, 41(2): 222-228

    Qiao Heting, Liu Shutian, Concurrent optimum design of components layout and connection in a structure. Chinese Journal of Theoretical and Applied Mechanics, 2009, 41(02): 222-228 (in Chinese))
    [23] 马振云, 何景武, 梁猛. 机翼/副翼连接结构的连接刚度特性分析. 飞机设计, 2011, 31(6): 16-20

    Ma Zhenyun, He Jingwu, Liang Meng, Analysis of connection stiffness on the joint structure between the wing and aileron, Aircraft Design, 2011, 31(6): 16-20 (in Chinese)
    [24] 田瑞, 王栋. 梁结构振动支承约束反力控制. 噪声与振动控制. 2021, 41(2): 50-55

    Tian Rui, Wang Dong. Optimal design of beam structure supports for controlling. Noise And Vibration Control. 2021, 41(2): 50-55. (in Chinese)
    [25] Javier L, Raffo, Ricardo O, Grossi. A note on the influence of intermediate restraints and hinges in frequencies and mode shapes of beams. International Journal of Acoustics and Vibration, 2014, 19(4): 261-268
    [26] Stolpe M, Svanberg K. An alternative interpolation scheme for minimum compliance topology optimization. Structural and Multidisciplinary Optimization, 2001, 22: 116-124
    [27] Olhoff N, Du J. Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subject to forced vibration at a prescribed low or high value of the excitation frequency. Structural and Multidisciplinary Optimization, 2016, 54: 1113-1141 doi: 10.1007/s00158-016-1574-3
    [28] Svanberg K. The method of moving asymptotes—A new method for structural optimization. International Journal for Numerical Methods in Engineering, 1987, 24(2): 359-373 doi: 10.1002/nme.1620240207
    [29] Sigmund O, Maute K. Topology optimization approaches A comparative review. Structural and Multidisciplinary Optimization, 2013, 48(6): 1031-1055 doi: 10.1007/s00158-013-0978-6
    [30] 朱继宏, 张卫红, 邱克鹏. 结构动力学拓扑优化局部模态现象分析. 航空学报, 2006, 27(4): 619-623 doi: 10.3321/j.issn:1000-6893.2006.04.016

    Zhu Jihong, Zhang Weihong, Qiu Kepeng. Investigation of localized modes in topology optimization of dynamic structures. Acta Aeronautica et Astronautica Sinica, 2006, 27(4): 619-623 (in Chinese) doi: 10.3321/j.issn:1000-6893.2006.04.016
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  16
  • HTML全文浏览量:  3
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-07-04
  • 录用日期:  2022-08-09
  • 网络出版日期:  2022-08-04

目录

    /

    返回文章
    返回