EI、Scopus 收录
中文核心期刊

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

退火处理对Pt基块体金属玻璃塑性动力学行为的影响

易梦丽 王驰 赖建平 李定骏 袁卫锋 余家欣

易梦丽, 王驰, 赖建平, 李定骏, 袁卫锋, 余家欣. 退火处理对Pt基块体金属玻璃塑性动力学行为的影响. 力学学报, 2024, 56(1): 1-10 doi: 10.6052/0459-1879-23-335
引用本文: 易梦丽, 王驰, 赖建平, 李定骏, 袁卫锋, 余家欣. 退火处理对Pt基块体金属玻璃塑性动力学行为的影响. 力学学报, 2024, 56(1): 1-10 doi: 10.6052/0459-1879-23-335
Yi Mengli, Wang Chi, Lai Jianping, Li Dingjun, Yuan Weifeng, Yu Jiaxin. Effects of annealing treatment on the plastic dynamics in a pt-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-10 doi: 10.6052/0459-1879-23-335
Citation: Yi Mengli, Wang Chi, Lai Jianping, Li Dingjun, Yuan Weifeng, Yu Jiaxin. Effects of annealing treatment on the plastic dynamics in a pt-based bulk metallic glass. Chinese Journal of Theoretical and Applied Mechanics, 2024, 56(1): 1-10 doi: 10.6052/0459-1879-23-335

退火处理对Pt基块体金属玻璃塑性动力学行为的影响

doi: 10.6052/0459-1879-23-335
基金项目: 国家自然科学基金(51975492, 12072300)和西南科技大学自然科学基金(19xz7163)资助项目
详细信息
    通讯作者:

    赖建平, 讲师, 主要研究方向为新型金属材料的摩擦学及力学特性. E-mail: ljp@swust.edu.cn

    余家欣, 教授, 主要研究方向为摩擦学与超精密加工. E-mail: yujiaxin@swust.edu.cn

  • 中图分类号: O341, O756

EFFECTS OF ANNEALING TREATMENT ON THE PLASTIC DYNAMICS IN A PT-BASED BULK METALLIC GLASS

  • 摘要: 采用退火的热诱导方法向Pt基块体金属玻璃(Pt-BMG)基体内原位引入纳米晶, 通过纳米压痕实验, 考察了Pt-BMG在铸态和在玻璃转变温度Tg之上(250 °C)退火15 min, 2 h和6 h的力学性能和塑性动力学行为. 研究结果表明, 退火时间从15 min增加到6 h时, Pt-BMG的结晶度从34%增加到57%, 平均晶粒尺寸从25.6 nm增加到38.3 nm, 硬度和折合模量分别从5.66 GPa和133.83 GPa增加到8.65 GPa和182.89 GPa, 同时载荷−位移曲线上的锯齿流变行为呈现从可明显观察到不连续的位移突变到比较平滑的变化规律. 通过分子动力学模拟进一步证明, 随着纳米晶尺寸的增加, 剪切转变区的激活与剪切带的成核呈现先促进后抑制、先增加后减小的趋势. 这是由于金属玻璃在塑性变形过程中, 小尺寸纳米晶会被剪切带所包裹或溶解, 促进了金属玻璃塑性变形的形成; 而大尺寸纳米晶在承受载荷时, 在晶体内部产生了位错和滑移, 进一步抑制了剪切带的成核与传播. 本文结合纳米压痕实验和分子动力学模拟, 从原子尺度上揭示了纳米晶的尺寸影响非晶合金塑性变形的内在机理, 为设计理想性能的金属玻璃提供了有效的实验基础与理论支撑.

     

  • 图  1  Pt-BMG制备的热历史过程

    Figure  1.  Thermal history process of Pt-BMG

    图  2  分子动力学模型的构建

    Figure  2.  Construction of molecular dynamics model

    图  3  Pt-BMG在铸态和在250 °C退火时的XRD谱图和结晶度与平均晶粒尺寸

    Figure  3.  XRD patterns and crystallinity and average grain size of Pt-BMG as-cast and annealed at 250 °C

    图  4  Pt-BMG在铸态和在250 °C退火15 min、2 h、6 h的硬度与折合模量

    Figure  4.  Hardness and reduced modulus of Pt-BMG in as-cast and annealed at 250 °C for 15 min, 2 h, and 6 h

    图  5  Pt-BMG在铸态和在250 °C退火时的载荷−位移曲线与SEM压痕形貌图

    Figure  5.  Load-displacement curves and SEM indentation topography of Pt-BMG as-cast and annealed at 250 °C

    图  6  Pt-BMG在铸态和在250 °C退火时的pop-in事件

    Figure  6.  Pop-in events of Pt-BMG as-cast and annealed at 250 °C

    图  7  分子动力学模拟不同晶粒尺寸的P-h曲线图

    Figure  7.  MD simulation of P-h curves of different grain sizes

    图  8  不同晶粒尺寸的金属玻璃在压痕下的剪切应变图 (续)

    Figure  8.  Shear strain maps of metallic glasses with different grain sizes under indentation (continued)

  • [1] 汪卫华. 非晶态物质的本质和特性. 物理学进展, 2013, 33(5): 177-351 (Wang Weihua. The nature and properties of amorphous substance. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)

    Wang Weihua. The nature and properties of amorphous substance. Progress in Physics, 2013, 33(5): 177-351 (in Chinese)
    [2] Wang WH. The elastic properties, elastic models and elastic perspectives of metallic glasses. Progress in Materials Science, 2012, 57(3): 487-656 doi: 10.1016/j.pmatsci.2011.07.001
    [3] Qiao JW, Jia HL, Liaw PK. Metallic glass matrix composites. Materials Science Engineering R Reports, 2016, 100(Feb.): 1-69
    [4] Inoue A. Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Materialia, 2000, 48(1): 279-306 doi: 10.1016/S1359-6454(99)00300-6
    [5] Fatay D, Gubicza J, Szommer P, et al. Thermal stability and mechanical properties of a Zr-based bulk amorphous alloy. Materials Science Engineering A, 2004, 387: 1001-1004
    [6] Schuh CA, Hufnagel TC, Ramamurty U. Mechanical behavior of amorphous alloys. Acta Materialia, 2007, 55(12): 4067-4109 doi: 10.1016/j.actamat.2007.01.052
    [7] Qu RT, Liu ZQ, Wang G, et al. Progressive shear band propagation in metallic glasses under compression. Acta Materialia, 2015, 91: 19-33 doi: 10.1016/j.actamat.2015.03.026
    [8] Saini P, Narayan RL. On simultaneous enhancement in local yield strength and plasticity of short-term annealed bulk metallic glasses. Journal of Alloys and Compounds, 2022, 898: 162960 doi: 10.1016/j.jallcom.2021.162960
    [9] Zhu JH, Gao WJ, Cheng SR, et al. Improving the glass forming ability and plasticity of ZrCuNiAlTi metallic glass by substituting Zr with Sc. Journal of Alloys and Compounds, 2022, 909: 164679 doi: 10.1016/j.jallcom.2022.164679
    [10] Louzguine-luzgin DV, Jiang J. Low-temperature relaxation behavior of a bulk metallic glass leading to improvement of both strength and plasticity. Materials Science and Engineering:A, 2022, 839: 142841 doi: 10.1016/j.msea.2022.142841
    [11] Eckert J, Das J, Pauly S, et al. Processing routes, microstructure and mechanical properties of metallic glasses and their composites. Advanced Engineering Materials, 2010, 9(6): 443-453
    [12] Yang DK, Wang JT, Fabijanic D, et al. Ti-based amorphous/nanocrystal composite with high ductility and strain-hardening. Materials Science and Engineering:A, 2013, 560: 339-342 doi: 10.1016/j.msea.2012.09.076
    [13] 王云江, 魏丹, 韩懂等. 非晶态固体的结构可以决定性能吗? 力学学报, 2020, 52(2): 303-317 (Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)

    Wang Yunjiang, Wei Dan, Han Dong, et al. Does structure determine property in amorphous solids? Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(2): 303-317 (in Chinese)
    [14] 乔吉超, 张浪渟, 童钰等. 基于微观结构非均匀性的非晶合金力学行为. 力学进展, 2022, 52(1): 117-152 (Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechanical properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038

    Qiao Jichao, Zhang Langting, Tong Yu, et al. Mechanical properties of amorphous alloys: In the framework of the microstructure heterogeneity. Advances in Mechanics, 2022, 52(1): 117-152 (in Chinese) doi: 10.6052/1000-0992-21-038
    [15] Ding HP, Bao XQ, Jamili-shirvan Z, et al. Enhancing strength-ductility synergy in an ex situ Zr-based metallic glass composite via nanocrystal formation within high-entropy alloy particles. Materials & Design, 2021, 210: 110108
    [16] Guo W, Wang MZ, Qin ZH, et al. Improving the glass-forming ability and plasticity of a TiCu-based bulk metallic glass composite by minor Ta doping. Journal of Alloys and Compounds, 2021, 884: 161054 doi: 10.1016/j.jallcom.2021.161054
    [17] Carter J, Fu E, Martin M, et al. Effects of Cu ion irradiation in Cu50Zr45Ti5 metallic glass. Scripta Materialia, 2009, 61(3): 265-268 doi: 10.1016/j.scriptamat.2009.03.060
    [18] Lee SW, Huh MY, Fleury E, et al. Crystallization-induced plasticity of Cu–Zr containing bulk amorphous alloys. Acta Materialia, 2006, 54(2): 349-355 doi: 10.1016/j.actamat.2005.09.007
    [19] 李卫卫, 宋海洋, 安敏荣等. 基于分子动力学模拟的铜锆晶体/非晶双相纳米复合材料力学行为. 复合材料学报, 2021, 38(12): 4239-4246 (Li Weiwei, Song Haiyang, An Minrong, et al. Mechanical behavior of copper-zirconium crystal/amorphous dual-phase nanocomposite based on molecular dynamics simulation. Acta Materiae Compositae Sinica, 2021, 38(12): 4239-4246 (in Chinese)

    Li Weiwei, Song Haiyang, An Minrong, et al. Mechanical behavior of copper-zirconium crystal/amorphous dual-phase nanocomposite based on molecular dynamics simulation. Acta Materiae Compositae Sinica, 2021, 38(12): 4239-4246 (in Chinese)
    [20] Chen Z, Datye A, Ketkaew J, et al. Relaxation and crystallization studied by observing the surface morphology evolution of atomically flat Pt57.5Cu14.7Ni5.3P22.5 upon annealing. Scripta Materialia, 2020, 182: 32-37 doi: 10.1016/j.scriptamat.2020.02.035
    [21] Hayat F, Yin J, Tabassum A, et al. Effects of cooling rate and sub-Tg annealing on Ni80P20 metallic glass: A molecular dynamic (MD) study. Computational Materials Science, 2020, 179: 109681 doi: 10.1016/j.commatsci.2020.109681
    [22] Reddy KV, Meraj M, Pal S. Molecular dynamics simulation based investigation of strain induced crystallization of nickel metallic glass. Materials Chemistry and Physics, 2019, 237: 121831 doi: 10.1016/j.matchemphys.2019.121831
    [23] 宋晓东, 陶平均. 分子动力学模拟晶向对B2-CuZr纳米晶/Cu50Zr50非晶复合材料塑性变形行为的影响. 材料导报, 2022, 36(S1): 120-125 (Song Xiaodong, Tao Pingjun. Effect of crystal orientation on the plastic deformation behavior of B2-CuZr nanocrystal/Cu50Zr50 amorphous composites by molecular dynamics simulation. Materials Reports, 2022, 36(S1): 120-125 (in Chinese)

    Song Xiaodong, Tao Pingjun. Effect of crystal orientation on the plastic deformation behavior of B2-CuZr nanocrystal/Cu50Zr50 amorphous composites by molecular dynamics simulation. Materials Reports, 2022, 36(S1): 120-125 (in Chinese)
    [24] Gu L, Xu LM, Zhang QS, et al. Direct in situ observation of metallic glass deformation by real-time nano-scale indentation. Scientific Reports, 2015, 5: 9122 doi: 10.1038/srep09122
    [25] Argon A. Plastic deformation in metallic glasses. Acta Metallurgica, 1979, 27(1): 47-58 doi: 10.1016/0001-6160(79)90055-5
    [26] Spaepen F. A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metallurgica, 1977, 25(4): 407-415 doi: 10.1016/0001-6160(77)90232-2
    [27] Li R, Chen Z, Datye A, et al. Atomic imprinting into metallic glasses. Communications Physics, 2018, 1(75): 1-6
    [28] Hua NB, Liao ZL, Wang QT, et al. Effects of crystallization on mechanical behavior and corrosion performance of a ductile Zr68Al8Ni8Cu16 bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 529: 119782 doi: 10.1016/j.jnoncrysol.2019.119782
    [29] Si LN, Guo D, Luo JB, et al. Planarization process of single crystalline silicon asperity under abrasive rolling effect studied by molecular dynamics simulation. Applied Physics A, 2012, 109(1): 119-126 doi: 10.1007/s00339-012-7026-z
    [30] Zhu PZ, Fang FZ. Molecular dynamics simulations of nanoindentation of monocrystalline germanium. Applied Physics A, 2012, 108(2): 415-421 doi: 10.1007/s00339-012-6901-y
    [31] Avila KE, Kuchemann S, Alhafez IA, et al. Shear-transformation zone activation during loading and unloading in nanoindentation of metallic glasses. Materials, 2019, 12(9): 1477 doi: 10.3390/ma12091477
    [32] Qiu C, Zhi PZ, Fang FZ, et al. Study of nanoindentation behavior of amorphous alloy using molecular dynamics. Applied Surface Science, 2014, 305: 101-110 doi: 10.1016/j.apsusc.2014.02.179
    [33] Celtek M, Sengul S. Thermodynamic and dynamical properties and structural evolution of binary Zr80Pt20 metallic liquids and glasses: molecular dynamics simulations. Journal of Non-Crystalline Solids, 2018, 498: 32-41 doi: 10.1016/j.jnoncrysol.2018.06.003
    [34] Sengul S, Celtek M, Domekeli U. The structural evolution and abnormal bonding ways of the Zr80Pt20 metallic liquid during rapid solidification under high pressure. Computational Materials Science, 2020, 172: 109327 doi: 10.1016/j.commatsci.2019.109327
    [35] Yang WY, Han CY, Sun MH. A novel medium-range structure in Zr80Pt20 metallic glass. Materials Letters, 2022, 308: 131154 doi: 10.1016/j.matlet.2021.131154
    [36] Stukowski A. Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modelling Simul Mater Sci Eng, 2010, 18(1): 2154-2162
    [37] Shi HA, Tang CC, Zhao XY, et al. Effect of isothermal annealing on mechanical performance and corrosion resistance of Ni-free Zr59Ti6Cu17.5Fe10Al7.5 bulk metallic glass. Journal of Non-Crystalline Solids, 2020, 537: 120013 doi: 10.1016/j.jnoncrysol.2020.120013
    [38] Cheng L, Jiao ZM, Ma SG, et al. Serrated flow behaviors of a Zr-based bulk metallic glass by nanoindentation. Journal of Applied Physics, 2014, 115(8): 084907 doi: 10.1063/1.4866874
    [39] Mukhopadhyay NK, Belger A, Paufler P, et al. Nanoindentation studies on Cu-Ti-Zr-Ni-Si-Sn bulk metallic glasses. Materials Science and Engineering:A, 2007, 449-451: 954-957 doi: 10.1016/j.msea.2006.02.258
    [40] 董杰, 王雨田, 胡晶等. 非晶合金剪切带动力学行为研究. 力学学报, 2020, 52(02): 379-391 (Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(02): 379-391 (in Chinese)

    Dong Jie, Wang Yutian, Hu Jing, et al. Shear-band dynamics in metallic glasses. Chinese Journal of Theoretical and Applied Mechanics, 2020, 52(02): 379-391 (in Chinese)
    [41] Luo LS, Wang BB, Dong FY, et al. Structural origins for the generation of strength, ductility and toughness in bulk-metallic glasses using hydrogen microalloying. Acta Materialia, 2019, 171: 216-230 doi: 10.1016/j.actamat.2019.04.022
    [42] Zang L, Yan T, Sopu D, et al. Shear-band blunting governs superior mechanical properties of shape memory metallic glass composites. Acta Materialia, 2022, 241: 118422 doi: 10.1016/j.actamat.2022.118422
    [43] Hou QQ, Wang T, Zhou JL, et al. The improvement of the plasticity of a Zr - Ni -Al bulk metallic glass by static quenching. Materials Science and Engineering:A, 2022, 851: 143624 doi: 10.1016/j.msea.2022.143624
    [44] Dini G, Ueji R. Effect of grain size and grain orientation on dislocations structure in tensile strained TWIP steel during initial stages of deformation. Steel Research International, 2012, 83(4): 374-378 doi: 10.1002/srin.201100308
    [45] Greer AL, Cheng YQ, Ma E. Shear bands in metallic glasses. Materials Science and Engineering:R:Reports, 2013, 74(4): 71-132 doi: 10.1016/j.mser.2013.04.001
    [46] Brink T, Peterlechner M, Rösner H, et al. Influence of crystalline nanoprecipitates on shear-band propagation in Cu-Zr-based metallic glasses. Physical Review Applied, 2016, 5(5): 054005 doi: 10.1103/PhysRevApplied.5.054005
    [47] Wang YS, Hao GJ, Zhang Y, et al. The role of the interface in a Ti-based metallic glass matrix composite with in situ dendrite reinforcement. Surface Interface Analysis, 2014, 46(5): 293-296 doi: 10.1002/sia.5413
    [48] Sun P, Peng CX, Cheng Y, et al. Mechanical behavior of CuZr dual-phase nanocrystal-metallic glass composites. Computational Materials Science, 2019, 163: 290-300 doi: 10.1016/j.commatsci.2019.03.046
    [49] Gao LK, Feng SD, Qi LQ, et al. Effects of nanocrystals on evolution behavior of shear transformation zones in Zr85Cu15 metallic glasses. Journal of Non-Crystalline Solids, 2015, 419: 34-38 doi: 10.1016/j.jnoncrysol.2015.03.032
  • 加载中
图(8)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  26
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 网络出版日期:  2023-11-17

目录

    /

    返回文章
    返回